用户名: 密码: 验证码:
壁面润湿性对微细通道内R141b流动沸腾不稳定性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of wall surface wettability on instability of R141b flow boiling in microchannels
  • 作者:罗小平 ; 廖政标 ; 周建阳 ; 张霖
  • 英文作者:LUO Xiaoping;LIAO Zhengbiao;ZHOU Jianyang;ZHANG Lin;School of Mechanical and Automotive Engineering, South China University of Technology;
  • 关键词:微细通道 ; 润湿性 ; 不稳定性 ; Hurst指数
  • 英文关键词:microchannels;;wettability;;instability;;Hurst exponent
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:华南理工大学机械与汽车工程学院;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:国家自然科学基金(21776096);; 广东省石油化工装备工程技术研究中心开放基金(2017JJ517010)
  • 语种:中文;
  • 页:HGJZ201902005
  • 页数:9
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:48-56
摘要
为了探究壁面润湿性对制冷剂R141b流动沸腾不稳定性的影响,设计微细通道流动沸腾实验平台,制备3种不同润湿性的矩形微细通道,其壁面接触角分别为62.3°、接近0°和158.7°。以R141b为实验工质,在截面宽×高为1mm×2mm的矩形微细通道内进行流动沸腾换热实验,研究了沿程测点压力波动情况以及影响进出口总压降波动的因素,最后对总压降波动信号进行Hurst指数分析,结果表明:微细通道沿程测点波动方差最大的位置正处于沸腾起始点(ONB)附近,热流密度的减小以及质量通量的增大均会使沸腾起始点推后;进出口总压降波动受热流密度、质量通量和壁面润湿性的影响,相同工况下,热流密度增大和质量通量的减小都会引起系统不稳定性增强,超疏水表面微细通道的总压降波动方差均比其他两种表面的大,是波动方差最小的超亲水表面的1.35~1.84倍;利用Hurst指数分析,表明系统具有混沌现象,超疏水表面微细通道的Hurst指数最大,表现出更强烈的不稳定性。
        In order to explore the effect of wall wettability on the flow boiling instability of refrigerant R141b,a microchannel flow boiling experimental platform was designed and three rectangular channels of different wetting properties were fabricated with wall contact angles of 62.3°,close to 0°,and 158.7°,respectively.Using R141b as an experimental working fluids,flow boiling heat transfer experiments were carried out in a rectangular microchannel with a cross-section width×height of 1mm×2mm.The pressure fluctuations at the measuring points along the channel and the factors affecting the fluctuation of the total pressure drop between the inlet and outlet were studied.Finally,the Hurst index analysis of the total pressure drop fluctuation signal were carried out.The results showed that the position with the largest fluctuation variance in the measurement point along the microchannel is near the onset of nucleate boiling(ONB).The decrease of heat flux and the increase of mass flux will delay the onset of nucleate boiling.The fluctuation of total pressure drop at inlet and outlet is influenced by the heat flux,mass flux,and wall wettability.Under the same conditions,the increase of heat flux and the decrease of mass flux will cause the increase of system instability.The total pressure drop fluctuation variance on the superhydrophobic surface of microchannels is larger than that of the other two surfaces,which is 1.35 to 1.84 times larger than that of the superhydrophilic surface with the smallest fluctuation variance.Hurst exponent analysis shows that the system has a chaotic phenomenon,and the Hurst exponent of the super hydrophobic surface microchannel is the largest,showing a more intense instability.
引文
[1] SAISORN S, WONGWISES S. The effects of channel diameter onflow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels[J]. Experimental Thermaland Fluid Science, 2010, 34(4):454-462.
    [2] SALAH S A S, FILALI E G, DJELLOULI S. Numericalinvestigation of Reynolds number and scaling effects in micro-channels flows[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(4):647-658.
    [3] PRAJAPATI Y K, BHANDARI P. Flow boiling instabilities inmicrochannels and their promising solutions—A review[J].Experimental Thermal and Fluid Science, 2017, 88:576-593.
    [4] BHIDE R R, SINGH S G, SRIDHARAN A, et al. Pressure dropand heat transfer characteristics of boiling water in sub-hundredmicro-channel[J]. Experimental Thermal and Fluid Science,2009, 33:963-975.
    [5] BOGOJEVIC D, SEFIANE K, DUURSMA G, et al. Bubbledynamics and flow boiling instabilities in microchannels[J].International Journal of Heat and Mass Transfer, 2013, 58(1/2):663-675.
    [6] LIU T Y, LI P L, LIU C W, et al. Boiling flow characteristics inmicrochannels with very hydrophobic surface to super-hydrophilic surface[J]. International Journal of Heat and MassTransfer, 2011, 54(1):126-134.
    [7] HERMINGHAUS S, BRINKMANN M, SEEMANN R. Wettingand dewetting of complex surface geometries[J]. Annual Review ofMaterials Research, 2008, 38(1):101-121.
    [8] MARMUR A. Solid-surface characterization by wetting[J]. AnnualReview of Materials Research, 2009, 39(1):473-489.
    [9] LEE H, PARK I, MUDAWAR I, et al. Micro-channel evaporatorfor space applications—1. Experimental pressure drop and heattransfer results for different orientations in earth gravity[J].International Journal of Heat and Mass Transfer, 2014, 77(4):1213-1230.
    [10] ZHOU K, COYLE C, LI J, et al. Flow boiling in vertical narrowmicrochannels of different surface wettability characteristics[J].International Journal of Heat and Mass Transfer, 2017, 109:103-114.
    [11] WANG Y, SEFIANE K, WANG Z G, et al. Analysis of two-phasepressure drop fluctuations during micro-channel flow boiling[J].International Journal of Heat and Mass Transfer, 2014, 70(3):353-362.
    [12] WANG G D, CHENG P. An experimental study of flow boilinginstability in a single microchannel[J]. InternationalCommunications in Heat and Mass Transfer, 2008, 35:1229-1234.
    [13] AL-HAYES R A M, WINTERTON R H S. Bubble diameter ondetachment in flowing liquids[J]. International Journal of Heat andMass Transfer, 1981, 24(2):223-230.
    [14] MEI R, KLAUSNER J F. Unsteady force on a spherical bubble atfinite Reynolds number with small fluctuations in the free‐streamvelocity[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(4):613-631.
    [15] TANG X,ZHAO Y H,DIAO Y H. Experimental investigation ofthe nucleate pool boiling heat transfer characteristics of Al2O3-R141b nanofluids on a horizontal plate[J]. Experimental Thermaland Fluid Science,2014,52:88-96.
    [16] PADOIN N, SOUZA A Z D, ROPELATO K, et al. Numericalsimulation of isothermal gas-liquid flow patterns in microchannelswith varying wettability[J]. Chemical Engineering Research andDesign, 2016, 109(109):698-706.
    [17] DRAHOS J, BRADKA F, PUNCOCHAR M. Fractal behaviour ofpressure fluctuations in a bubble column[J]. ChemicalEngineering Science, 1992, 47(15/16):4069-4075.
    [18]孙斌,周云龙.气液两相流压差波动信号的Hurst指数计算与分析[J].华北电力大学学报, 2004, 31(5):48-51.SUN Bin, ZHOU Yunlong. Calculation and analysis of Hurstexponent for pressure drop fluctuation signal of gas-liquid two-phase flow[J]. Journal of North China Electric Power University,2004, 31(5):48-51.
    [19] CARR J R. Statistical self-affinity, fractal dimension, andgeologic interpretation[J]. Engineering Geology, 1997, 48(3):269-282.
    [20] COEURJOLLY J F, PORCU E. Properties and Hurst exponentestimation of the circularly-symmetric fractional Brownian motion[J]. Statistics and Probability Letters, 2017, 128:21-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700