用户名: 密码: 验证码:
热压缩过程中2205双相不锈钢的组织演变和软化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructural Evolution and Softening Mechanism of 2205 Duplex Stainless Steel during Hot Compression
  • 作者:吴天海 ; 王建军 ; 张影 ; 李花兵 ; 范光伟 ; 刘春明
  • 英文作者:WU Tianhai;WANG Jianjun;ZHANG Ying;LI Huabing;FAN Guangwei;LIU Chunming;School of Materials Science and Engineering, Northeastern University;Shenyang Industrial Transformation and Upgrading Promotion Center;School of Metallurgy, Northeastern University;Shanxi Taigang Stainless Steel Co. Ltd.;
  • 关键词:金属材料 ; 2205双相不锈钢 ; 高温压缩 ; 动态再结晶 ; 动态回复
  • 英文关键词:metallic materials;;2205 duplex stainless steel;;high temperature compression;;dynamic recrystallization;;dynamic recovery
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:东北大学材料科学与工程学院;沈阳市产业转型升级促进中心;东北大学冶金学院;太原钢铁集团有限公司技术中心;
  • 出版日期:2019-04-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(U1860201);; 辽宁省重点实验室基础研究计划(LZ2015035)~~
  • 语种:中文;
  • 页:CYJB201904002
  • 页数:7
  • CN:04
  • ISSN:21-1328/TG
  • 分类号:16-22
摘要
在不同变形温度和应变速率条件下对2205双相不锈钢进行高温压缩实验,研究了变形温度、应变速率和变形量对其显微组织中铁素体和奥氏体两相的影响,分析了高温变形软化机制。结果表明:随着变形温度的提高这种钢的峰值应力及其对应的应变逐渐减小。随着变形温度从850℃提高到950℃,2205双相不锈钢显微组织中的铁素体向奥氏体的转变占主导地位;变形温度高于950℃时,随着变形温度的提高铁素体与奥氏体之间的强度水平之差逐渐减小,显微组织中的奥氏体向铁素体的转变占主导地位。在本文的热变形条件下2205双相不锈钢的显微组织中铁素体呈现出与奥氏体不同的软化机制,铁素体的软化机制为动态回复和动态再结晶,而奥氏体因层错能较低其软化只能通过有限程度的动态回复进行。
        The microstructural evolution and softening mechanism of 2205 duplex stainless stee during hot deformation were investigated by high temperature compression tests at different temperatures ranging from 850°C to 1250°C with different strain rates of 0.1 s~(-1),1 s~(-1)and 10 s~(-1).The microstructures after hot compression were characterized by means of optical microscope and scanning electron microscope equipped with an electron back-scattered diffraction(EBSD)system.The results show that the peak stress and the corresponding strain decrease with the increasing temperature.The stress-strain curves show typical characteristics of dynamic recrystallization or dynamic recovery under different hot compression conditions.The transition temperature at which the stress-strain curve changes from dynamic recrystallization type to dynamic recovery type increases from 1150°C to 1050°C as the strain rate increases from 0.1 s~(-1)to 1 s~(-1)and 10 s~(-1).The phase transformation of ferrite to austenite was dominant in the microstructure of 2205 duplex stainless steel when deformation temperature increased from 850℃to950℃.With the increasing temperature,the strength difference between ferrite and austenite decreased gradually,and the transformation from austenite to ferrite was predominant in the microstructure of 2205duplex stainless steel when the deformation temperature was above 950℃.Ferrite and austenite in the microstructure of 2205 duplex stainless steel exhibited different softening mechanisms under the hot compression conditions adopted in this work.Ferrite was softened by dynamic recovery and dynamic recrystallization,while austenite with lower stacking fault energy was softened by a limit degree of dynamic recovery.
引文
[1]Badji R, Bouabdallah M, Bacroix B, et al. Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds[J]. Mater. Charact., 2008, 59(4):447
    [2]Kordatos J D, Fourlaris G, Papadimitriou G. The effect of cooling rate on the mechanical and corrosion properties of SAF 2205(UNS 31803)duplex stainless steel welds[J]. Scripta Mater.,2001, 44(3):401
    [3]Chen Y L, Luo Z Y, Li J Y. Effect of solution temperature on mi-crostructure and pitting corrosion resistance of S32760 duplex stainless steel[J]. Acta Metall. Sin., 2015, 51(9):1085(陈雨来,罗照银,李静媛.固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J].金属学报, 2015, 51(9):1085)
    [4]Cao J, An L C, Qi X, et al. Pitting corrosion behavior of cast Ti-bear-ing duplex stainless steel[J]. Chin. J. Mater. Res., 2017, 31(7):553(曹静,安力聪,齐兴等.含Ti铸造双相不锈钢点蚀行为研究[J].材料研究学报, 2017, 31(7):553)
    [5]Zou D N, Han Y, Zhang Wet al. Phase transformation and its effects on mechanical properties and pitting corrosion resistance of 2205duplex stainless steel[J]. J. Iron Steel Res. Int., 2010, 17(11):67
    [6]Lo K H, Shek C H, Lai J K L, Recent developments in stainless steels[J]. Mater. Sci. Eng. R, 2009, 65(4-6):39
    [7]Zakeri M, Moayed M H. Investigation on the effect of nitrate ion on the critical pitting temperature of 2205 duplex stainless steel along a mechanistic approach using pencil electrode[J]. Corros.Sci., 2014, 85(4):222
    [8]Sotomayor M E, Kloe R D, Levenfeld B, et al. Microstructural study of duplex stainless steels obtained by powder injection mold-ing[J]. J. Alloys Compd., 2014, 589(4):314
    [9]Zou D N, Wu K, Han Y, et al. Deformation characteristic and pre-diction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression[J]. Mater. Des., 2013, 51:975
    [10]Liu Y, Yan H. Wang X.et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101[J].Mater. Sci. Eng. A, 2013, 575(13):41
    [11]Cabrera J M, Mateo A, Llanes L, et al. Hot deformation of duplex stainless steels[J]. J. Mater. Process. Technol., 2003, 143(36):321
    [12]Patra S, Ghosh A, Kumar V, et al. Deformation induced austenite formation in as-cast 2101 duplex stainless steel and its effect on hot-ductility[J]. Mater. Sci. Eng. A, 2016, 660:61
    [13]Fan G W, Liu J, Han P D, et al. Hot ductility and microstructure in casted 2205 duplex stainless steels[J]. Mater. Sci. Eng. A, 2009,515(1-2):108
    [14]Han Y, Zou D, Chen Z, et al. Investigation on hot deformation be-havior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates[J]. Mater. Charact., 2011, 62(2):198
    [15]Sieurin H, Sandstr?m R. Sigma phase precipitation in duplex stain-less steel 2205[J]. Mater. Sci. Eng. A, 2007, 444(1-2):271
    [16]Masoumi M, Reis F E U, Castro M O D, et al. Texture evolution and phase transformation of 25Cr-6Mo-5Ni experimental duplex stainless steel during hot and cold rolling[J]. J. Mater. Res. Tech-nol., 2017, 6(3):232
    [17]Li G P, Wang J J, Wu T H, et al. Microstructure and mechanical properties of 2205 DSS metal inert-gas welding joints[J]. Chin. J.Mater. Res., 2016, 30(12):897(李国平,王建军,吴天海等. 2205双相不锈钢TIG焊接头组织及力学性能[J].材料研究学报, 2016, 30(12):897)
    [18]Cervo R, Ferro P, Tiziani A. Annealing temperature effects on su-per duplex stainless steel UNS S32750 welded joints. I:micro-structure and partitioning of elements[J]. J. Mater. Sci., 2010, 45(16):4369
    [19]Ma X, An Z, Chen L, et al. The effect of rare earth alloying on the hot workability of duplex stainless steel-A study using processing map[J]. Mater. Des., 2015, 86(2):848
    [20]Cheng G J, Gault B, Huang C Y, et al. Warm ductility enhanced by austenite reversion in ultrafine-grained duplex steel[J]. Acta Ma-ter., 2018, 148:344
    [21]Yang Y H. High temperature deformation and corrosion behavior of 2205 duplex stainless steel under low strain rate of 0.005 s-1[J].Adv. Mater. Res., 2014, 933:27
    [22]Siegmund T, Werner E, Fischer F D. On the thermomechanical de-formation behavior of duplex-type materials[J]. J. Mech. Phys.Solids, 1995, 43(4):495
    [23]Cizek P. The microstructure evolution and softening processes dur-ing high temperature deformation of a 21Cr-10Ni-3Mo duplex stainless steel[J]. Acta Mater., 2016, 106:129
    [24]Iza-Mendia A, Pinol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions[J]. Metall. Mater. Trans. A, 1998, 29(12):2975
    [25]Su Y S, Yang Y H, Cao J C, et al. Research on hot working behav-ior of low-Nickel duplex stainless steel 2101[J]. Acta Metall. Sin.,2018, 54(4):485(苏煜森,杨银辉,曹建春等.节Ni型2101双相不锈钢的高温热加工行为研究[J].金属学报, 2018, 54(4):485)
    [26]Balancin O, Hoffmann W A M, Jonas J J. Influence of microstruc-ture on the flow behavior of duplex stainless steels at high temper-atures[J]. Metall. Mater. Trans. A, 2000, 31(5):1353
    [27]Dehghan-Manshadi A, Hodgson P D, Effect ofδ-ferrite co-exis-tence on hot deformation and recrystallization of austenite[J]. J.Mater. Sci., 2008, 43(18):6272
    [28]Wu J. Duplex Stainless Steel[M]. Beijing:Metallurgical Industry Press, 1999(吴玖.双相不锈钢[M].北京:冶金工业出版社, 1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700