用户名: 密码: 验证码:
乙基多杀菌素和联苯肼酯对地熊蜂的毒性及风险评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Toxicity and risk of spinetoram and bifenazate to bumblebee Bombus terrestris(Hymenoptera: Apidae)
  • 作者:王欢 ; 徐希
  • 英文作者:WANG Huan;XU Xi-Lian;Institute of Plant and Environment Protection,Beijing Academy of Agriculture and Forestry Sciences;
  • 关键词:地熊蜂 ; 农药 ; 乙基多杀菌素 ; 联苯肼酯 ; 安全性评价 ; 乙酰胆碱酯酶 ; 谷胱甘肽-S-转移酶 ; 羧酸酯酶
  • 英文关键词:Bombus terrestris;;pesticide;;spinetoram;;bifenazate;;safety evaluation;;acetylcholinesterase;;glutathione-S-transferase;;carboxylesterase
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:北京市农林科学院植物保护环境保护研究所;
  • 出版日期:2019-03-20
  • 出版单位:昆虫学报
  • 年:2019
  • 期:v.62
  • 基金:北京市科技计划项目(D17110500160000);; 北方果树病虫害绿色防控北京市重点实验室(BZ0432);; 北京市农林科学院科技创新能力建设专项(KJCX20170107)
  • 语种:中文;
  • 页:KCXB201903007
  • 页数:9
  • CN:03
  • ISSN:11-1832/Q
  • 分类号:62-70
摘要
【目的】明确乙基多杀菌素和联苯肼酯对地熊蜂Bombus terrestris的毒性,探讨这两种农药亚致死浓度对地熊蜂体内乙酰胆碱酯酶(AchE)、谷胱甘肽-S-转移酶(GST)和羧酸酯酶(CarE) 3种解毒酶活性的影响。【方法】采用饲喂法测定60 g a.i./L乙基多杀菌素和43%联苯肼酯对地熊蜂采集蜂的急性经口毒性,依据农药对蜜蜂生态风险的危害熵(hazard quotient, HQ)值评估这两种农药对地熊蜂的风险。同时测定了这两种农药亚致死剂量(LD_(50)和LD_(80))处理后地熊蜂AchE, GST和CarE的活性变化。【结果】60 g a.i./L乙基多杀菌素和43%联苯肼酯对地熊蜂采集蜂的急性经口毒性测定48 h时LD_(50)值分别为3.590和1 447μg a.i./蜂,其中60 g a.i./L乙基多杀菌素表现为中毒,43%联苯肼酯表现为低毒。两种农药对地熊蜂采集蜂的HQ值均低于50,表现为低风险。LD_(50)和LD_(80)剂量的乙基多杀菌素处理组与对照组相比,3 h时地熊蜂AchE活性被激活,显著高于对照组(P<0.05),分别为对照组的1.45和1.23倍,24 h后活性受到抑制,两个剂量处理组AchE活性均显著低于对照组(P<0.05);CarE活性3 h时同样被激活,显著高于对照组(P<0.05),LD_(50)和LD_(80)剂量处理组CarE活性分别为对照组的1.24和1.53倍, 24 h后活性受到抑制,其中LD_(50)剂量处理组CarE活性显著低于对照组(P<0.05),LD_(80)剂量处理组CarE活性与对照组差异不显著(P>0.05);LD_(50)和LD_(80)剂量处理组GST活性3 h被激活,显著高于对照组(P<0.05),分别为对照组的2.24和2.58倍,24 h后活性降低,但两个剂量处理组GST活性仍显著高于对照组(P<0.05)。43%联苯肼酯处理后,与对照组相比3 h时LD_(50)和LD_(80)剂量处理组AchE活性与对照组差异不显著(P>0.05),24 h后AchE活性降低,显著低于对照组(P<0.05),分别是对照组的75%和80%;CarE活性3 h时被抑制,LD_(50)剂量处理组CarE活性显著低于对照组(P<0.05),LD_(80)剂量处理组CarE活性低于对照组,但差异不显著(P>0.05),24 h后CarE活性被激活,其中LD_(50)剂量处理组CarE活性高于对照组,但差异不显著(P>0.05),LD_(80)剂量处理组CarE活性显著高于对照组(P<0.05);LD_(50)剂量处理组GST活性3 h时被激活,显著高于对照组(P<0.05),24 h后活性降低,但仍显著高于对照组(P<0.05),3 h和24 h的活性分别为对照组的2.04和1.72倍,LD_(80)剂量处理组3 h的GST活性与对照组无显著差异(P>0.05),24 h后活性降低,显著低于对照组(P<0.05)。【结论】乙基多杀菌素和联苯肼酯对地熊蜂的HQ评估均表现为低风险,其中联苯肼酯对地熊蜂的安全性较高,在熊蜂授粉过程中可以按照推荐剂量应用,但过量施用或者长期施用可能会造成熊蜂体内药剂积累引起生理或者行为的变化,乙基多杀菌素在温室及大田授粉期的使用剂量和方法有待进一步研究。
        【Aim】 This study aims to clarify the toxicities of spinetoram and bifenazate to bumblebee Bombus terrestris, and to explore the effect of sublethal doses of these two pesticides on the activities of three detoxifying enzymes including acetylcholinesterase(AchE), glutathione-S-transferase(GST), and carboxylesterase(CarE). 【Methods】 The acute oral toxicities of 60 g a.i./L spinetoram and 43% bifenazate to the foragers of B. terrestris were measured by feeding method. The risk of the two insecticides to B. terrestris was assessed based on the hazard quotient(HQ) values for the ecological risk of insecticides to bees. The changes in the activities of AchE, GST and CarE in foragers of B. terrestris treated with the two pesticides at sublethal doses(LD_(50)and LD_(80)) were assayed. 【Results】 The LD_(50)values of 60 g a.i./L spinetoram and 43% bifenazate against foragers of B. terrestris at 48 h after oral exposure were 3.590 and 1 447 μg a.i. per bee, respectively. Spinetoram at the dose of 60 g a.i./L showed moderate toxicity to foragers of B. terrestris, while 43% bifenazate showed low toxicity. The HQ values of the two insecticides to foragers of B. terrestris were both below 50, suggesting that the two insecticides present low risk to this bumblebee species. The AchE activities in bees treated with LD_(50) and LD_(80) of spinetoram were significantly enhanced at 3 h(P<0.05), with a 1.45-and 1.23-fold increase as compared to the control group, respectively. Subsequently, the AchE activities in both the dose groups were inhibited after 24 h, and were significantly lower than that in the control group(P<0.05). The CarE activities in bees treated with LD_(50) and LD_(80) of spinetoram were also significantly higher in the first 3 h after treatment, being 1.24-and 1.53-fold higher than that in the control group, respectively, and then inhibited after 24 h. At 24 h after treatment, the CarE activity in the LD_(50) dose group was significantly lower than that in the control group(P<0.05), but that in the LD_(80) dose group showed no significant difference from that in the control group(P>0.05). The GST activities in bees treated with LD_(50) and LD_(80) of spinetoram were also activated at 3 h after treatment(P<0.05), with a 2.24-and 2.58-fold increase as compared to the control group, respectively. At 24 h after treatment, the GST activities in both dose groups decreased, but were still significantly higher than that in the control groups(P<0.05). The AchE activities in bees were treated with LD_(50)and LD_(80) of 43% bifenazate within 3 h showed no significant differences from that in the control group(P>0.05), but reduced to 75% and 80% of that in the control group after 24 h, respectively(P<0.05). The CarE activities in the both dose groups were inhibited after 3 h. The CarE activity in bees treated with LD_(50)of bifenazate for 3 h was significantly lower than that in the control group(P<0.05), whereas that in bees treated with the LD_(80) dosage showed no significant difference from that in the control group(P>0.05). The CarE activities in bees treated with LD_(50)and LD_(80) of bifenazate for 24 h were activated, and the LD_(80) dose group had a significantly higher level of CarE activity than that in the control group(P<0.05), but the CarE activity in the LD_(50) dose group showed no significant difference from that in the control group(P>0.05). The GST activities in bees treated with LD_(50) of bifenazate increased at first(P<0.05), and then decreased. The GST activities in bees treated with LD_(50) of bifenazate for 3 h and 24 h were 2.04-and 1.72-fold higher than that in the control group, respectively(P<0.05). The GST activity in the LD_(80) dose group was not significantly different from that in the control group in the first 3 h(P>0.05), but was inhibited after 24 h and significantly lower than that in the control group(P<0.05). 【Conclusion】 The results demonstrate that spinetoram and bifenazate have low risk to the foragers of B. terrestris as judged by the HQ value. The safety of bifenazate to B. terrestris is higher, so it can be used in pollination period according to the recommended dosage and method. However, the excessive and long-term application of bifenazate may affect the physiology and behavior of bumblebees. The dosage and method of application of spinetoram during the pollination period need to be further explored.
引文
Besard L, Mommaerts V, Abdu-Alla G, 2011. Lethal and sublethal side-effect assessment supports a more benign profile of spinetoram compared with spinosad in the bumblebee Bombus terrestris. Pest Manag. Sci., 67(5): 541-547.
    Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler, MA, Berenbaum MR, Feyereisen R, Oakeshott JG, 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in honeybee. Insect Mol. Biol., 15(5): 615-636.
    Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI, 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848): 283-287.
    Dhruba N, 2009. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv., 142(10): 2369-2372.
    Diao QY, 2006. Comparative Study on Toxicological Characteristics of Apis cerana and Apis mellifera. PhD Dissertation, Chinese Academy of Agricultural Sciences, Beijing. [刁青云, 2006. 东方蜜蜂和西方蜜蜂的毒理学特性比较研究. 北京: 中国农业科学院博士学位论文]
    Dogterom MH, Matteoni JA, Plowright RC, 1998. Pollination of greenhouse tomatoes by North American Bombus vosnesenskii (Hymenoptera: Apidae). J. Econ. Entomol., 91(1): 71-75.
    Doublet V, Labarussias M, Miranda JRD, Moritz RFA, Paxton RJ, 2015. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Entomol., 17(4): 969-983.
    EPPO (European and Mediterranean Plant Protection Organization), 2000. Guidelines for the efficacy evaluation of plant protection products. PP1/170(4): side effects on honeybees. IOBC/WPRS Bull., 23: 51-55.
    Frost EH, Shutler D, Hillier NK, 2013. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J. Exp. Biol., 216(15): 2931-2938.
    Gabriel E, Roxana CS, Catalina GB, Patricia S, Gastón C, Rodrigo M, 2013. Assessing the impact of the invasive buff-tailed bumblebee (Bombus terrestris) on the pollination of the native Chilean herb Mimulus luteus. Arthropod-Plant Interact., 7(4): 467-474.
    Gill RJ, Ramosrodriguez O, Raine NE, 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 491(7422): 105-108.
    Goulson D, Nicholls E, Botías C, Rotheray EL, 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229): 1255957.
    Gradish AE, Scott-Dupree CD, Cutler GC, 2012. Susceptibility of Megachile rotundata to insecticides used in wild bluberry production in Atlantic Canada. J. Pest Sci., 85(1): 133-140.
    He JH, Ke HY, Hong WY, Wu YJ, Zhao SF, Shao MH, Cheng SM, Ma WQ, Hong ZH, 2012. Effects of new anti-mite agent such as biphenylhydrazine ester on strawberry spider. Zhejiang Agric. Sci., (11): 1546-1548. [何建红, 柯汉云, 洪文英, 吴燕君, 赵帅锋, 邵美红, 程思明, 马卫强, 洪智慧, 2012. 联苯肼酯等新型杀螨剂对草莓红蜘蛛的控制作用. 浙江农业科学, (11): 1546-1548]
    Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A, 2012. A common pesticide decrease foraging success and survival in honeybees. Science, 336(6079): 348-350.
    Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, Del Nozal MJ, Bernal JL, Jiménez JJ, Palencia PG, 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol., 10(10): 2659-2669.
    Johnson RM, 2015. Honey bee toxicology. Annu. Rev. Entomol., 60: 415-434.
    Kaya M, Erdogan S, Mol A, Baran T, 2015. Comparison of chitin structures isolated from seven Orthoptera species. Int. J. Biol. Macromol., 72: 797-805.
    Lu YH, Gao XW, 2016. Inhibiting effects of common insecticides on carboxylesterase activity in Sitobin avenae and Rhopalosiphum padi (Hemiptera: Aphididae) and their synergism to beta-cypermethrin. Acta Entomol. Sin., 59(11): 1151-1158. [鲁艳辉, 高希武, 2016. 常用杀虫剂对麦长管蚜和禾谷缢管蚜羧酸酯酶活性的抑制及对高效氯氰菊酯的增效作用. 昆虫学报, 59(11): 1151-1158]
    Oldroyd BP, 2007. What’s killing American honey bees? PLoS Biol., 5(6): e168.
    Papaefthimiou C, Theophilidis G, 2001. The cardiotoxic action of the pyrethroid insecticide deltamethrin, the azole fungicide prochloraz, and their synergy on the semi-isolated heart of the bee Apis mellifera macedonica. Pestic. Biochem. Physiol., 69(2): 77-91.
    Pettis JS, vanEngelsdorp D, Johnson J, Dively G, 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Sci. Nat., 99(2): 153-158.
    Ramanaidu K, Hardman JM, Percival DC, Cutler GC, 2011. Laboratory and field susceptibility of blueberry spanworm (Lepidoptera: Geometridae) to conventional and reduced-risk insecticides. Crop Prot., 30(12): 1643-1648.
    Schmuck R, 2004. Effect of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch. Environ. Contam. Toxicol., 47(4): 471-478.
    Shi R, Liu F, 2016. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors. J. Mol. Model., 22(6): 1-13.
    Sonoda S, 2010. Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostella. Pest Manag. Sci., 66(5): 572-575.
    Su SK, Zhan Y, Cai F, Liu F, Chen SL, 2007. Advances on colony collapse disorder (CCD) of honeybee. Apicul. China, 58(11): 5-7.[苏松坤, 湛毅, 蔡芳, 刘芳, 陈盛禄, 2007. 蜂群崩溃失调病(CCD)研究进展. 中国蜂业, 58(11): 5-7]
    Velthuis HH, Kevan P, 2002. The historical background of the domestication of the bumblebee, Bombus terrestris, and its introduction in agriculture. In: Kevan P, Imperatriz Fonseca VL eds. Pollinating Bees-The Conservation Link between Agriculture and Nature. Ministry of Environment, Sao Paulo, Brasil. 177-184.
    Wang K, Pang Q, Zhang WW, Ji T, 2017. Effects of sublethal doses of carbendazim on the growth and detoxifying enzyme activities of honeybee (Apis mellifera ligustica) larvae. Acta Entomol. Sin., 60(6): 642-649. [王康, 庞倩, 张文文, 吉挺, 2017. 多菌灵亚致死剂量对意大利蜜蜂幼虫生长发育和解毒酶系活性的影响. 昆虫学报, 60(6): 642-649]
    Williamson SM, Baker DD, Wright GA, 2013. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera. Invert. Neurosci., 13(1): 63-70.
    Wu JY, Anelli CM, Sheppard WS, 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE, 6(2): e14720.
    You MS, Yue Z, He WY,Yang XH, Yang G, Xie M, Zhan DL, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai J, Wang P, Cui K, Huang S, Li X, Zhou Q, Wu Z, Chen Q, Liu C, Wang B, Li X, Xu X, Lu C, Hu M, Davey JW, Smith SM, Chen M, Xia X, Tang W, Ke F, Zheng D, Hu Y, Song F, You Y, Ma X, Peng L, Zheng Y, Liang Y, Chen Y, Yu L, Zhang Y, Liu Y, Li G, Fang L, Li J, Zhou X, Luo Y, Gou C, Wang J, Wang J, Yang H, Wang J, 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet., 45(2): 220-225.
    Yu HL, Xiang X, Yuan GX, Chen YQ, Wang XG, 2015. Effects of sublethal doses of cyantraniliprole on the growth and development and the activities of detoxifying enzymes in Spodoptera exigua (Lepidoptera: Noctuidae). Acta Entomol. Sin., 58(6): 634-641. [余慧灵, 向兴, 袁贵鑫, 陈羿渠, 王学贵, 2015. 溴氰虫酰胺亚致死剂量对甜菜夜蛾生长发育及体内解毒酶活性的影响. 昆虫学报, 58(6): 634-641]
    Yuan SK, Xu H, Qu WG, Shan ZJ, Bu YQ, Yan QP, Wang HL, 2014. GB/T 31270.10-2014. Test Guidelines on Environmental Safety Assessment for Chemical Pesticide, Part 10: Acute Toxicity Test of Bees. Standards Press of China, Beijing. [袁善奎, 徐晖, 瞿唯钢, 单正军, 卜元卿, 严清平, 王会利, 2014. GB/T 31270.10-2014. 化学农药环境安全评价试验准则. 第10部分: 蜜蜂急性毒性试验. 北京: 中国标准出版社]
    Zhou H, Shao JN, Zhai YF, Wu GA, Chen H, Men XY, Yu Y, Zheng L, 2017. Toxicity and risk assessment of sulfoxaflor, spinetoram and their mixture to Bombus terrestris (Hymenoptera: Apidae). Acta Entomol. Sin., 60(7): 809-816. [周浩, 邵莒南, 翟一凡, 吴光安, 陈浩, 门兴元, 于毅, 郑礼, 2017. 氟啶虫胺腈、乙基多杀菌素及其混剂对地熊蜂的毒性及风险评估. 昆虫学报, 60(7): 809-816]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700