用户名: 密码: 验证码:
两种不同纳米金修饰方法制备的Au/CeO_2复合物的抗氧化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Antioxidant properties of Au/CeO_2 prepared by two different modification methods
  • 作者:法孟梅 ; 姚鑫
  • 英文作者:FA Mengmei;YAO Xin;School of Chemical Sciences, University of Chinese Academy of Sciences;
  • 关键词:Au/CeO_2复合物 ; 溶胶法 ; 沉积法 ; 抗氧化性能 ; 表面结构
  • 英文关键词:Au/CeO_2;;sol-immobilized;;deposition method;;antioxidant activity;;surface structure
  • 中文刊名:ZKYB
  • 英文刊名:Journal of University of Chinese Academy of Sciences
  • 机构:中国科学院大学化学科学学院;
  • 出版日期:2019-01-15
  • 出版单位:中国科学院大学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(21271184);; 973项目(2014CB931900);; 中国科学院科学仪器发展项目(ZDKYYQ20170001)资助
  • 语种:中文;
  • 页:ZKYB201901018
  • 页数:6
  • CN:01
  • ISSN:10-1131/N
  • 分类号:134-139
摘要
以水热法制备的CeO_2纳米棒为载体,分别采用溶胶法和沉积法对其进行纳米金修饰,得到两种不同纳米金修饰方法制备的Au/CeO_2复合物。在MV-Fenton体系中用紫外分光光度法对两种Au/CeO_2复合物的抗氧化性能进行研究。结果表明:溶胶法制备的Au/CeO_2(S-Au/CeO_2)比沉积法制备的Au/CeO_2(D-Au/CeO_2)展现出更好的抗氧化性能。进一步研究表明:沉积法制备过程可能破坏了CeO_2的表面结构,导致其抗氧化性能降低;另外,溶胶法负载的AuNPs和CeO_2之间的电子传递也使其抗氧化性能增强。
        The application of Au nanoparticles(AuNPs) modified CeO_2(Au/CeO_2) as an antioxidant has great potential in the field of life health, and exploring the antioxidant activities of Au/CeO_2 prepared by different methods is helpful for optimizing the property of Au/CeO_2. In this work, two different Au-modified CeO_2 were synthesized by modifying AuNPs on the surface of CeO_2 nanorods using sol-immobilized and deposition methods, respectively. The antioxidant activities of two different Au/CeO_2 were studied by UV method in the MV-Fenton system, and the results showed that the antioxidant activity of Au/CeO_2 by sol-immobilized method(S-Au/CeO_2) was higher than that of Au/CeO_2 by deposition method(D-Au/CeO_2). The affecting factors on the differences between the antioxidant properties of the two Au/CeO_2 were further investigated. We suppose that the surface structure of CeO_2 may be damaged in the process of preparation by deposited method, which resulted in the lower antioxidant activity of D-Au/CeO_2. In addition, the electron transfer between sol-immobilized AuNPs and CeO_2 contributed to the higher antioxidant activity of S-Au/CeO_2. These results have great significance for the functional preparation and antioxidant property regulation of Au/CeO_2.
引文
[1] Ampelli C, Leonardi S G, Bonavita A, et al. Electrochemical H2O2 sensors based on Au/CeO2 nanoparticles for industrial applications[J]. Icheap12: 12th International Conference on Chemical & Process Engineering, 2015, 43: 733-738.
    [2] Chen Z, Gao Q M. Enhanced carbon monoxide oxidation activity over gold-ceria nanocomposites[J]. Applied Catalysis B-Environmental, 2008, 84(3/4): 790-796.
    [3] Li B X, Zhang B S, Nie S B, et al. Optimization of plasmon-induced photocatalysis in electrospun Au/CeO2 hybrid nanofibers for selective oxidation of benzyl alcohol[J]. Journal of Catalysis, 2017, 348: 256-264.
    [4] Anandkumar M, Ramamurthy C H, Thirunavukkarasu C, et al. Influence of age on the free-radical scavenging ability of CeO2 and Au/CeO2 nanoparticles[J]. Journal of Materials Science, 2015, 50(6): 2 522-2 531.
    [5] Babu K S, Anandkumar M, Tsai T Y, et al. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles[J]. International Journal of Nanomedicine, 2014, 9: 5 515-5 531.
    [6] Menchon C, Martin R, Apostolova N, et al. Gold nanoparticles supported on nanoparticulate ceria as a powerful agent against intracellular oxidative stress[J]. Small, 2012, 8(12): 1 895-1 903.
    [7] Prati L, Villa A. The art of manufacturing gold catalysts[J]. Catalysts, 2012, 2(1): 24-37.
    [8] Grunwaldt J D, Kiener C, Wogerbauer C, et al. Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids[J]. Journal of Catalysis, 1999, 181(2): 223-232.
    [9] Zhao Y, Baeza J A, Rao N K, et al. Unsupported PVA-and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase[J]. Journal of Catalysis, 2014, 318: 162-169.
    [10] Tana, Zhang M L, Li J, et al. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles[J]. Catalysis Today, 2009, 148(1/2): 179-183.
    [11] Wang L, Lu G, Yang D, et al. Manipulation of the reducibility of ceria-supported Au catalysts by interface engineering[J]. Chemcatchem, 2013, 5(6): 1 308-1 312.
    [12] Menegazzo F, Signoretto M, Fantinel T, et al. Sol-immobilized vs deposited-precipitated Au nanoparticles supported on CeO2 for furfural oxidative esterification[J]. Journal of Chemical Technology and Biotechnology, 2017, 92(9): 2 196-2 205.
    [13] Prati L, Martra G. New gold catalysts for liquid phase oxidation[J]. Gold Bulletin, 1999, 32(3): 96-101.
    [14] Lu M, Zhang Y, Wang Y W, et al. Insight into several factors that affect the conversion between antioxidant and oxidant activities of nanoceria[J]. Acs Applied Materials & Interfaces, 2016, 8(36): 23 580-23 590.
    [15] Kumar A, Babu S, Karakoti A S, et al. Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states[J]. Langmuir, 2009, 25(18): 10 998-11 007.
    [16] Spanier J E, Robinson R D, Zheng F, et al. Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering[J]. Physical Review B, 2001, 64(24): 245 407.
    [17] Heckert E G, Karakoti A S, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria[J]. Biomaterials, 2008, 29(18): 2 705-2 709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700