用户名: 密码: 验证码:
植物内皮层的分化及其屏障功能研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Differentiation and Barrier Function of Endodermis of Plant
  • 作者:王平 ; 周青平 ; 王沛
  • 英文作者:WANG Ping;ZHOU Qingping;WANG Pei;Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Collaborative Innovation Center for Ecological Animal Husbandry of Qinghai-Tibetan Plateau;
  • 关键词:内皮层 ; 凯氏带 ; 木栓层 ; 质外体屏障 ; 跨细胞屏障
  • 英文关键词:endodermis;;casparian strip;;suberin lamellae;;apoplast barrier;;transcellular barrier
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:西南民族大学青藏高原研究院青藏高原生态畜牧业协同创新中心;
  • 出版日期:2019-04-15
  • 出版单位:西北植物学报
  • 年:2019
  • 期:v.39
  • 基金:西南民族大学研究生创新型科研项目(CX2018SZ107);; 国家自然科学基金(31802122)
  • 语种:中文;
  • 页:DNYX201904025
  • 页数:11
  • CN:04
  • ISSN:61-1091/Q
  • 分类号:188-198
摘要
植物根系最主要的作用之一是从土壤中获取养分并将其运输至地上部。水和营养物质径向穿过根的表皮、皮层、内皮层等所有外部细胞层,才能到达中柱,以供地上部代谢所需。其中,内皮层细胞在发育过程中会经历两个特殊的分化阶段,分别形成凯氏带和木栓层两种扩散屏障,二者在控制养分获取与流失方面起着重要的作用。该文就近年来国内外有关植物内皮层分化过程及其屏障功能方面的研究进展进行了综述,以期对深入探索内皮层屏障在植物生长发育和逆境适应中的作用提供参考,为植物育种工作开辟新的思路。
        One of the most important functions of plant roots is to uptake nutrients from the soil and upwards them to the aerial parts. Water and nutrients are transported across epidermis, cortex and endodermis of the concentric root cell layers before reaching the central vasculature for aboveground metabolism. The endodermis undergoes two stages of differentiation with forming two diffusion barriers, Casparian strips and suberin lamellae, which play important roles in controlling nutrients acquisition and loss. This review summarizes the research progress of endodermal differentiation and barrier function in the past few years, and put forward the future research directions, so as to provide a theoretical basis for the further exploring the role of endodermal barrier in plant growth and development, as well as stress adaptation, and opens up a new thought for plant breeding in turn.
引文
[1] BARBERON M.The endodermis as a checkpoint for nutrients[J].The New Phytologist,2017,213(4):1 604-1 610.
    [2] KRESZIES T,SCHREIBER L,RANATHUNGE K.Suberized transport barriers in Arabidopsis,barley and rice roots:From the model plant to crop species[J].Journal of Plant Physiology,2018,227:75-83.
    [3] MAIZEL A.Plant biology:the making of an epithelium[J].Current Biology:CB,2018,28(17):R931-R933.
    [4] CRUZ-RAMíREZ A,DíAZ-TRIVI?O S,BLILOU I,et al.A bistable circuit involving scarecrow-retinoblastoma integrates cues to inform asymmetric stem cell division[J].Cell,2012,150(5):1 002-1 015.
    [5] GELDNER N.The endodermis[J].Annual Review of Plant Biology,2013,64:531-558.
    [6] BARBERON M,VERMEER J E M,BELLIS D D,et al.Adaptation of root function by nutrient-induced plasticity of endodermal differentiation[J].Cell,2016,164(3):447-459.
    [7] BAXTER I,HOSMANI P S,et al.Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis[J].Plos Genetics,2009,5(5):188-192.
    [8] HOSMANI P S,KAMIYA T,DANKU J,et al.Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root[J].Proceedings of the National Academy of Sciences of the USA,2013,110(35):14 498-14 503.
    [9] KAMIYA T,BORGHI M,WANG P,et al.The MYB36 transcription factor orchestrates Casparian strip formation[J].Proceedings of the National Academy of Sciences of the USA,2015,112(33):10 533-10 538.
    [10] PFISTER A,BARBERON M,ALASSIMONE J,et al.A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects[J].Elife,2014,3.e03115.
    [11] DOLAN L,JANMAAT K,WILLEMSEN V,et al.Cellular organisation of the Arabidopsis thaliana root[J].Development,1993,119(1):71-84.
    [12] PAULUZZI G,DIVOL F,PUIG J,et al.Surfing along the root ground tissue gene network[J].Developmental Biology,2012,365(1):14-22.
    [13] HOSE E,CLARKSON D T,STEUDLE E,et al.The exodermis:a variable apoplastic barrier[J].Journal of Experimental Botany,2001,52(365):2 245-2 264.
    [14] ALASSIMONE J,CHRISPEELS M J.A developmental framework for endodermal differentiation and polarity[J].Proceedings of the National Academy of Sciences of the USA,2010,107(11):5 214-5 219.
    [15] NASEER S,LEE Y,LAPIERRE C,et al.Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin[J].Proceedings of the National Academy of Science,2012,109(25):10 101-10 106.
    [16] HAAS D L,CAROTHERS Z B.Some ultrastructural observations on endodermal cell development in Zea Mays roots[J].American Journal of Botany,1975,62(4):336-348.
    [17] ROBARDS A W,JACKSON S M,CLARKSON D T,et al.The structure of barley roots in relation to the transport of ions into the stele[J].Protoplasma,1973,77(2-3):291-311.
    [18] VAN FLEET DS.Histochemistry and function of the endodermis[J].The Botanical Review,1961,27:165-220.
    [19] SCHREIBER L,HARTMANN K,SKRABS M,et al.Apoplastic barriers in roots:chemical composition of endodermal and hypodermal cell walls[J].Journal of Experimental Botany,1999,50:1 267-1 280.
    [20] ZEIER J,RUEL K,RYSER U,et al.Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots[J].Planta,1999,209:1-12.
    [21] BONAWITZ N D,CHAPPLE C.The Genetics of Lignin Biosynthesis:Connecting Genotype to Phenotype[J].Annual Review of Genetics,2010,44(1):337-363.
    [22] 翁群清,郑秀娟,解慧芳,等.植物凯氏带形成分子机制及功能特点的研究进展[J].西北植物学报,2017,37(7):1 450-1 456.WENG Q Q,ZHENG X J,XIE H F,et al.Molecular mechanisms of formation and functional characteristics of Casparian strip[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(7):1 450-1 456.
    [23] ROPPOLO D,DERYBEL B,TENDON VD,et al.A novel protein family mediates Casparian strip formation in the endodermis[J].Nature,2011,473:380-383.
    [24] LEE Y,RUBIO M,ALASSIMONE J,et al.A mechanism for localized lignin deposition in the endodermis[J].Cell,2013,153(2):402-412.
    [25] ALASSIMONE J,FUJITA S,DOBLAS V G,et al.Polarly localized kinase SGN1 is required for Casparian strip integrity and positioning[J].Nature Plants,2016,2(8):16 113.
    [26] DOBLAS V G,SMAKOWSKA-LUZAN E,et al.Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor[J].Science,2017,355(6 322):280-284.
    [27] NAKAYAMA T,SHINOHARA H,et al.A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots[J].Science,2017,355(6 322):284-286.
    [28] LIBERMAN L M,SPARKS E E,MORENORISUENO M A,et al.MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root[J].Proceedings of the National Academy of Sciences of the USA,2015,112(39):12 099-12 104.
    [29] BARBOSA I C R,ROJAS-MURCIA N,GELDNER N.The Casparian strip—one ring to bring cell biology to lignification?[J].Current Opinion in Biotechnology,2019,56:121-129.
    [30] KOLATTUKUDY P E.Polyesters in higher plants[J].Advances in Biochemical Engineering,2001,71:1-49.
    [31] FRANKE R,SCHREIBER L.Suberin—a biopolyester forming apoplastic plant interfaces[J].Current Opinion in Plant Biology,2007,10:252-259.
    [32] POLLARD M,BEISSON F,LI Y,et al.Building lipid barriers:biosynthesis of cutin and suberin[J].Trends in Plant Science,2008,13(5):236-246.
    [33] GRA?A J,PEREIRA H.Methanolysis of bark suberins:analysis of glycerol and acid monomers[J].Phytochemical Analysis,2015,11(1):45-51.
    [34] BERNARDS MA,FLEMING WD,LLEWELLYN DB,et al.Plourde GL.Biochemical characterization of the suberization-associated anionic peroxidase of potato[J].Plant Physiology,1999,121:135-145
    [35] KOLATTUKUDY PE,WALTON TJ,Structure and biosynthesis of hydroxy fatty acids of cutin in Vicia faba leaves[J].Biochemistry,1972,11:1 897-1 907.
    [36] SOLIDAY CL,KOLATTUKUDY PE,Biosynthesis of cutin.ω-hydroxylation of fatty acids by amicrosomal preparation from germinating Vicia faba[J].Plant Physiology,1977,59:1 116-1 121.
    [37] KOLATTUKUDY PE.Structure,biosynthesis and biodegradation of cutin and suberin[J].Annual Review of Plant Physiology,1981,32:539-567.
    [38] HOFER R,BRIESEN I,BECK M,et al.The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis[J].Journal of Experimental Botany,2008,59:2 347-2 360.
    [39] COMPAGNON V,DIEHL P,et al.CYP86B1 is required for very long chain omega-hydroxyacid and alpha,omega -dicarboxylic acid synthesis in root and seed suberin polyester[J].Plant Physiology,2009,150(4):1 831-1 843.
    [40] LI Y,BEISSON F,et al.Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers[J].Proceedings of the National Academy of Sciences of the USA,2007,104(46):18 339-18 344.
    [41] YANG W,SIMPSON JP,LI-BEISSON Y,et al.A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis:substrate specificity,sn-2 preference,and evolution[J].Plant Physiology.2012,160:638-652.
    [42] MILLAR AA,KUNST L.Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J].The Plant Journal.1997,12:121-131.
    [43] SAMUELS L,KUNST L,JETTER R.Sealing plant surfaces:cuticular wax formation by epidermal cells[J].Annual Review of Plant Biology.2008,59:683-707.
    [44] DOMERGUE F,VISHWANATH SJ,JOUBèS J,et al.Three Arabidopsis fatty acyl-CoA reductases,FAR1,FAR4,and FAR5,generate primary fatty alcohols associated with suberin deposition[J].Plant Physiology.2010,153:1 539-1 554.
    [45] VISHWANATH SJ,KOSMA DK,PULSIFER IP,et al.Suberin-associated fatty alcohols in Arabidopsis:distributions in roots and contributions to seed coat barrier properties[J].Plant Physiology.2013,163:1 118-1 132.
    [46] VISHWANATH S J,DELUDE C,et al.Suberin:biosynthesis,regulation,and polymer assembly of a protective extracellular barrier[J].Plant Cell Reports,2015,34(4):573-586.
    [47] YADAV V,REED J W.ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis[J].Plant Cell,2014,26(9):3 569-3 588.
    [48] 韩雪源,茅林春.木栓质组成成分、组织化学特性及其生物合成研究进展[J].植物学报,2017,52(3):358-37 HAN X Y,MAO L C.Research progress on constituents,histochemical characteristics and biosynthesis of suberin[J].Bulletin of Botany,2017,52(3):358-374.
    [49] KOSMA D K,MURMU J,RAZEQ F M,et al.At MYB 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types[J].Plant Journal for Cell & Molecular Biology,2015,80(2):216-229.
    [50] LEGAY S,GUERRIERO G,CHRISTELLE,et al.MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins[J].New Phytologist,2016,212(4):977-991.
    [51] LASHBROOKE J G,COHEN H,LEVY-SAMOCHA D,et al.MYB107 and MYB9 homologs regulate suberin deposition in angiosperms[J].The Plant Cell,2016,28(9):2 097-2 116.
    [52] GOU M,HOU G,YANG H,et al.The MYB107 transcription factor positively regulates suberin biosynthesis[J].Plant Physiology,2017,173(2):1 045-1 058.
    [53] ROBBINS N E,TRONTIN C,DUAN L,et al.Beyond the barrier:communication in the root through the endodermis[J].Plant Physiology,2014,166(2):551-559.
    [54] DOBLAS V G,GELDNER N,BARBERON M.The endodermis,a tightly controlled barrier for nutrients[J].Current Opinion in Plant Biology,2017,39:136-143.
    [55] CLARKSON D T,SANDERSON J.The uptake of a polyvalent cation and its distribution in the root apices of Allium cepa:Tracer and autoradiographic studies[J].Planta,1969,89(2):136-154.
    [56] ROBARDS A W,ROBB M E.The entry of ions and molecules into roots:an investigation using electron-opaque tracers[J].Planta,1974,120(1):1-12.
    [57] PETERSON C A.The exodermal Casparian band of onion roots blocks the apoplastic movement of sulphate ions[J].Journal of Experimental Botany,1987,38(197):2 068-2 081.
    [58] CLARKSON D T,ROBARDS A W,et al.Suberin lamellae in the hypodermis of maize (Zea mays) roots;development and factors affecting the permeability of hypodermal layers[J].Plant Cell & Environment,1987,10(1):83-93.
    [59] KRISHNAMURTHY P,RANATHUNGE K,et al.The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa,L) [J].Planta,2009,230(1):119-134.
    [60] KRISHNAMURTHY P,RANATHUNGE K,NAYAK S,et al.Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L) [J].Journal of Experimental Botany.2011,62:4 215-4 228.
    [61] OPARKA K J,DUCKETT C M,PRIOR D A M,et al.Real-time imaging of phloem unloading in the root tip of Arabidopsis[J].Plant Journal,1994,6(5):759-766.
    [62] 王沛.木栓质合成关键基因CYP86A在植物抵御盐胁迫中的作用研究[D].兰州:兰州大学,2017.
    [63] KARAHARA I,IKEDA A,KONDO T,et al.Development of the Casparian strip in primary roots of maize under salt stress[J].Planta,2004,219(1):41-47.
    [64] RANATHUNGE K,LIN J,STEUDLE E,et al.Stagnant deoxygenated growth enhances root suberization and lignifications,but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J].Plant Cell & Environment,2011,34(8):1 223-1 240.
    [65] SHIONO K,ANDO M,NISHIUCHI S,et al.RCN1/OsABCG5,an ATP-binding cassette (ABC) transporter,is required for hypodermal suberization of roots in rice (Oryza sativa) [J].Plant Journal,2014,80(1):40-51.
    [66] Lí?KA D,MARTINKA M,et al.Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses[J].Annals of Botany,2016,118(4):667-674.
    [67] 杨朝东,李守峰,姚兰,等.天胡荽的解剖和屏障结构特征研究[J].草业学报,2015,24(7):139-145.YANG C D,LI S F,YAO L,et al.A study of anatomical structure and apoplastic barrier characteristics of Hydrocotyle sibthorpioides[J].Acta Prataculturae Sinica,2015,24(7):139-145.
    [68] 杨朝东,李守峰,邓仕明,等.白茅解剖结构和屏障结构特征研究[J].草业学报,2015,24(3):213-218.YANG C D,LI S F,DENG S M,et al.Study of the anatomy and apoplastic barrier characteristics of Imperata cylindrica[J].Acta Prataculturae Sinica,2015,24(3):213-218.
    [69] REINHARDT D H,ROST T L.Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots[J].Environmental & Experimental Botany,1995,35(4):563-574.
    [70] FERNANDEZ-GARCIA N,LOPEZ-PEREZ L,et al.Role of phi cells and the endodermis under salt stress in Brassica oleracea[J].New Phytologist,2010,181(2):347-360.
    [71] KRISHNAMURTHY P,JYOTHI-PRAKASH P A,QIN L,et al.Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis[J].Plant Cell and Environment,2014,37(7):1 656-1 671.
    [72] RANATHUNGE K,SCHREIBER L.Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin[J].Journal of Experimental Botany,2011,62(6):1 961-1 974.
    [73] KRESZIES T,SCHREIBER L,RANATHUNGE K.Suberized transport barriers in Arabidopsis,barley and rice roots:from the model plant to crop species[J].Journal of Plant Physiology,2018,227:75-83.
    [74] KRESZIES T,SHELLAKKUTTI N,et al.Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots:analysis of chemical,transcriptomic and physiological responses[J].New Phytologist,2018,221:180-194.
    [75] LULAI E C,CORSINI D L.Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing[J].Physiological & Molecular Plant Pathology,1998,53(4):209-222.
    [76] LULAI E C,WEILAND J J,SUTTLE J C,et al.Pink eye is an unusual periderm disorder characterized by aberrant suberization:A cytological analysis[J].American Journal of Potato Research,2006,83(5):409-421.
    [77] LULAI E C.Non-wound-induced suberization of tuber parenchyma cells:a physiological response to the wilt disease pathogen Verticillium dahliae[J].American Journal of Potato Research,2005,82(6):433-440.
    [78] BUSKILA Y,LAHKIM L T,SHARON M,et al.Postharvest dark skin spots in potato tubers are an oversuberization response to Rhizoctonia solani infection[J].Phytopathology,2011,101(4):436-444.
    [79] DANTI R,ROTORDAM M G,et al.Different clonal responses to cypress canker disease based on transcription of suberin-related genes and bark carbohydrates’ content[J].Trees-Structure and Function,2018,3(66):1 707-1 722.
    [80] RIOUX D,BLAIS M,et al.First extensive microscopic study of butternut defense mechanisms following inoculation with the canker pathogen Ophiognomonia clavigignenti-juglandacearum reveals compartmentalization of tissue damage[J].Phytopathology,2018.108:1 237-1 252.
    [81] THOMAS R,FANG X,RANATHUNGE K,et al.Soybean root suberin:anatomical distribution,chemical composition,and relationship to partial resistance to Phytophthora sojae[J].Plant Physiology,2007,144:299-311.
    [82] RANATHUNGE K,THOMAS RH,FANG X,et al.Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae[J].Phytopathology,2008,98:1 179-1 189.
    [83] BATHOOVA M,BOKOR B,SOUKUP M,et al.Silicon-mediated cell wall modifications of sorghum root exodermis and suppression of invasion by fungus Alternaria alternata[J].Plant Pathology,2018,67(9):1 891-1 900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700