用户名: 密码: 验证码:
考虑地震波随机性及水位影响的高土石坝易损性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic fragility assessment of high earth-rockfill dams considering the seismic wave randomness and water level
  • 作者:靳聪聪 ; 迟世春 ; 聂章博
  • 英文作者:JIN Congcong;CHI Shichun;NIE Zhangbo;Faculty of Infrastructure Engineering, Dalian University of Technology;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology;
  • 关键词:多样条分析(MSA)法 ; 地震易损性 ; SWANDYNE ; II程序 ; 破坏概率
  • 英文关键词:MSA approach;;seismic fragility;;SWANDYNE Ⅱ program;;failure probability
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:大连理工大学建设工程学部;大连理工大学海岸与近海工程国家重点实验室;
  • 出版日期:2019-03-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.338
  • 基金:国家自然科学基金(51379029);; 国家重点研发计划(2016YFB0201001)
  • 语种:中文;
  • 页:ZDCJ201906010
  • 页数:9
  • CN:06
  • ISSN:31-1316/TU
  • 分类号:72-79+112
摘要
考虑地震动输入数量及不同水位工况下的流固耦合影响,采用弹塑性模型非线性有限元方法对国内某高土石坝进行动力分析,再通过多样条分析(MSA)法对该坝地震易损性研究。根据场地条件选取40条地震波,并对高土石坝震害等级进行划分,选取坝体相对震陷率作为易损性极限状态指标;采用动力固结有限元程序SWANDYNE II对大坝进行动力计算,再采用MSA法得到地震易损性曲线。通过不同地震波数量的易损性方程参数分析,确定地震波合适的输入数量。通过对不同水位和地震动强度作用下的高土石坝三维易损性曲线发现,在相同地震作用下,随着水位的升高,大坝不同等级相应的破坏概率增大。综合考虑不同水位和地震动输入数量对高土石坝地震易损性的影响,可为高土石坝抗震安全评估提供参考依据。
        Considering the number of input ground motions and the fluid-solid coupling of high earth rock dams under different water levels, the dynamic analysis of a high earth rock dam in China was carried out by using an elasto-plastic model and nonlinear finite element method. Then the seismic fragility assessment of the dam was investigated based on the multi samples analysis(MSA) method. 40 seismic waves were selected according to the site condition, and the earthquake damage level of the high earth rock dam was divided. The relative seismic subsidence rate of the dam was selected as the index of the fragility limit state. The dynamic consolidation finite element program SWANDYNE Ⅱ was used in the dynamic analysis of the dam, and the seismic fragility curve was obtained by the MSA method. Through analyzing the fragility equation parameters under different seismic waves, the appropriate number of seismic waves was determined. Through the 3 D fragility curves of the high earth rock dam considering the influences of different water level and ground motion, it is shown that the damage probability under different damage levels increases with the rise of water level under the same earthquake. Considering the influences of different water level and seismic waves, the results provide a reference to the seismic safety assessment of high earth rock dams.
引文
[1]陈厚群.汶川地震后对大坝抗震安全的思考[J].中国工程科学,2009,11(6):44-53.CHEN Houqun.Consideration on seismic safety of dams in China after the Wenchuan earthquake[J].Engineering Sciences,2009,11(6):44-53.
    [2]胡军.高土石坝动力稳定分析及加固措施研究[D].大连,大连理工大学,2008.
    [3]SCHOTANUS M I J,FRANCHIN P,LUPOI A,et al.Seismic fragility analysis of 3D structures[J].Structural Safety,2004,26(4):421-441.
    [4]张菊辉,管仲国.规则连续梁桥地震易损性研究[J].振动与冲击,2014,33(20):140-145.ZHANG Juhui,GUAN Zhongguo.Seismic vulnerablility analysis of regular continuous girder bridges[J].Journal of Vibration and Shock,2014,33(20):140-145.
    [5]BERNIER C,PADGETT J E,PROULX J,et al.Seismic fragility of concrete gravity dams with spatial variation of angle of friction:case study[J].Journal of Structural Engineering,2016,142(5):05015002.
    [6]KADKHODAYAN V,AGHAJANZADEH S M,MIRZABOZORGH.Seismic assessment of arch dams using fragility curves[J].Civil Engineering Journal,2016,1(2):14-20.
    [7]VAMVATSIKOS D.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [8]马智勇,张伟,周强,等.基于位移的重力坝地震易损性分析方法[J].振动与冲击,2017,36(22):51-58.MA Zhiyong,ZHANG Wei,ZHOU Qiang,et al.Adeformation-based method for seismic fragility analysis of gravity dam[J].Journal of Vibration and Shock,2017,36(22):51-58.
    [9]王海波.水工抗震学科国际科学技术发展动态跟踪[J].中国水利水电科学研究院学报,2009(2):286-293.WANG Haibo.A state-of-art report on aseismic design of hydraulic structure[J].Journal of China Institute of Water Resources and Hydropower Research,2009(2):286-293.
    [10]JALAYER F.Direct probabilistic seismic analysis:implementing non-linear dynamic assessments[M].Stanford,CA:Stanford University,2003.
    [11]BAKER J W.Efficient analytical fragility function fitting using dynamic structural analysis[J].Earthquake Spectra,2015,31(1):579-599.
    [12]王刚,张建民.波浪作用下某防沙堤的动力固结有限元分析[J].岩土力学,2006,27(4):579-599.WANG Gang,ZHANG Jianmin.Dynamic consolidation finite element analysis of a sediment-protecting dyke under ocean wave loading[J].Rock and Soil Mechanics,2006,27(4):579-599.
    [13]孔宪京,庞锐,邹德高,等.基于IDA的高面板堆石坝抗震性能评价[J].岩土工程学报,2018(6):978-984.KONG Xianjing,PANG Rui,ZOU Degao,et al.Seismic performance evaluation of high CFRD based on incremental dynamic analysis[J].Chinese Journal of Geotechnical Engineering,2018(6):978-984.
    [14]王笃波,刘汉龙,于陶.基于变形的土石坝地震风险分析[J].岩土力学,2012,33(5):1479-1484.WANG Dubo,LIU Hanlong,YU Tao.Seismic risk analysis of earth-rock dam based on deformation[J].Rock and Soil Mechanics,2012,33(5):1479-1484.
    [15]庞锐,孔宪京,邹德高,等.基于MSA法的高心墙堆石坝地震沉降易损性分析[J].水利学报,2017,48(7):866-873.PANG Rui,KONG Xianjing,ZOU Degao,et al.Seismic subsidence fragility analysis of high CRFDs based on MSA[J].Journal of Hydraulic Engineering,2017,48(7):866-873.
    [16]KARIM K R,YAMAZAKI F.Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation[J].Earthquake Engineering and Structural Dynamics,2001,30(12):1839-1856.
    [17]MAALAWI K Y,BADAWY M T S.A direct method for evaluating performance of horizontal axis wind turbines[J].Renewable&Sustainable Energy Reviews,2001,5(2):175-190.
    [18]LACKNER M A,ROTEA M A.Structural control of floating wind turbines[J].Mechatronics,2011,21(4):704-719.
    [19]SHOME N.Probabilistic seismic demand analysis of nonlinear structure[D].Stanford,CA:Stanford University,1999.
    [20]梁海安.土石坝震害预测及快速评估方法研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [21]SWAISGOOD J R.Embankment dam deformations caused by earthquakes[C]∥2003 Pacific Conference on Earthquake Engineering.Christchurch:PCEE,2003.
    [22]生命线工程地震破坏等级划分:GB/T 24336-2009[S].北京:人民交通出版社,2009.
    [23]刘君,刘博,孔宪京.地震作用下土石坝坝顶沉降估算[J].水力发电学报,2012,31(2):183-191.LIU Jun,LIU Bo,KONG Xianjing.Estimation of earthquakeinduced crest settlements of earth and rock-fill dams[J].Journal of Hydroelectric Engineering,2012,31(2):183-191.
    [24]李红军,迟世春,林皋,等.高土石坝地震永久变形研究评述[J].水利学报,2007(增刊1):178-183.LI Hongjun,CHI Shichun,LIN Gao,et al.Review on the seismically permanent deformation of high earth rock-fill dams[J].Journal of Hydraulic Engineering,2007(Sup1):178-183.
    [25]李红军.高土石坝地震变形分析与抗震安全评价[D].大连:大连理工大学,2008.
    [26]赵剑明,刘小生,陈宁,等.高心墙堆石坝的极限抗震能力研究[J].水力发电学报,2009,28(5):97-102.ZHAO Jianming,LIU Xiaosheng,CHEN Ning,et al.Research on the maximum anti-seismic capability of high earth core rock-fill dam[J].Journal of Hydroelectric Engineering,2009,28(5):97-102.
    [27]王笃波,刘汉龙,于陶,等.基于变形的土石坝地震易损性分析[J].岩土工程学报,2013,35(5):814-819.WANG Dubo,LIU Hanlong,YU Tao,et al.Seismic fragility analysis for earth-rockfill dams based on deformation[J].Chinese Journal of Geotechnical Engineering,2013,35(5):814-819.
    [28]董威信.高心墙堆石坝流固耦合弹塑性地震动力响应分析[D].北京:清华大学,2015.
    [29]孔宪京,邹德高,徐斌,等.紫坪铺面板堆石坝三维有限元弹塑性分析[J].水力发电学报,2013,32(2):213-222.KONG Xianjing,ZOU Degao,XU Bin,et al.Threedimensional finite element elasto-plastic analysis of Zipingpu concrete faced rock-fill dam[J].Journal of Hydroelectric Engineering,2013,32(2):213-222.
    [30]DACUNHA-CASTELLE D,DUFLO M.Probability and statistics[M].Berlin:Springer Science&Business Media,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700