用户名: 密码: 验证码:
金属有机框架材料吸附分离水中铀的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of metal-organic frameworks in adsorption and separation of uranium from water
  • 作者:彭莹 ; 张晓文 ; 李密 ; 张宇 ; 吴晓燕
  • 英文作者:PENG Ying;ZHANG Xiaowen;LI Mi;ZHANG Yu;WU Xiaoyan;College of Resources, Environment and Safety Engineering, University of South China;
  • 关键词:金属有机框架材料 ; 吸附 ; 水溶液 ; ; 稳定性 ; 模拟
  • 英文关键词:metal-organic frameworks;;adsorption;;aqueous solution;;uranium;;stability;;simulation
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:南华大学资源环境与安全工程学院;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(51874180,51704169);; 南华大学双一流建设项目(2017SYL05);; 湖南省铀尾矿库退役治理技术工程技术研究中心联合项目(2018YKZX2008)
  • 语种:中文;
  • 页:HGJZ201907023
  • 页数:16
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:220-235
摘要
金属有机框架材料(metal-organic frameworks,MOFs)具有极高的比表面积和孔隙率,结构可设计调控,但在水相吸附分离方面存在水稳定和选择吸附性较差、分离困难、合成与再生成本偏高等问题。针对MOFs的缺陷,可以通过有目的的功能化改性从而提升其对目标污染物的吸附性能。本文介绍了MOFs的结构优势,分析了水稳定性的影响因素和判断手段,简述了具有代表性的高水稳定性MOFs材料的特性;根据MOFs改性方法的分类回顾了MOFs及改性MOFs在去除水相中放射性铀的应用;基于不同分析技术探讨了MOFs与铀酰离子的吸附机理;提出推动MOFs在吸附铀方面规模化应用发展的核心是合成高稳定性MOFs,通过改性提高MOFs的选择吸附性能和再生性以及深入研究吸附机理。
        Metal-organic frameworks(MOFs) have extremely high surface area and porosity, and their structures can be designed and regulated. However, there are some problems in its adsorption and separation in aqueous phase, such as poor water stability, poor adsorption selectivity, difficult separation from water, high cost of synthesis and regeneration. In light of this, MOFs can be functionalized purposefully to improve the adsorption performance on target pollutants. This review introduces the structural advantages of MOFs, analyzes the influencing factors and judgment methods of MOFs water stability, and briefly describes the characteristics of representative highly water stable MOFs materials.Special emphasis is put on the applications of different MOFs and modified MOFs in the removal of radioactive uranium from aqueous phase. Based on different analytical techniques, the adsorption mechanism of uranyl ions on MOFs was discussed. Finally, it is proposed that the key to promote the large-scale application of MOFs in uranium adsorption is to synthesize highly stable MOFs, improve the adsorption selectivity and regenerability through modification, and to study the adsorption mechanism indepth.
引文
[1]王建龙,刘海洋.放射性废水的膜处理技术研究进展[J].环境科学学报, 2013, 33(10):2639-2656.WANG J L, LIU H Y. Research advances in radioactive wastewater treatment using membrane processes[J]. Acta Scientiae Circumstantiae, 2013, 33(10):2639-2656.
    [2]陈海军,黄舒怡,张志宾,等.功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J].化学学报, 2017, 75(6):560-574.CHEN H J, HUANG S Y, ZHANG Z B, et al. Synthesis of functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment:a review[J]. Acta Chimica Sinica, 2017, 75(6):560-574.
    [3] YAN S, HUA B, BAO Z Y, et al. Uranium(Ⅵ)removal by nanoscale zerovalent iron in anoxic batch systems[J]. Environmental Science&Technology, 2010, 44(20):7783-778.
    [4] VELLINGIRI K, KIM K-H, POURNARA A, et al. Towards highefficiency sorptive capture of radionuclides in solution and gas[J].Progress in Materials Science, 2018, 94:1-67.
    [5] ABNEY C W, MAYES R T, SAITO T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23):13935-14013.
    [6]魏金枝,张少平,王雪亮,等.巯基修饰Cu-MOFs材料的制备及其汞吸附性能[J].化工学报, 2017, 68(5):2186-2194.WEI J Z, ZHANG S P, WANG X L, et al. Preparation of ethanedithiol modified Cu-MOFs and its adsorption performance for mercury[J].Journal of Chemical Industry and Engineering, 2017, 68(5):2186-2194.
    [7]赵田,董茗,赵熠,等.纳米金属-有机框架材料的制备及应用[J].化学进展, 2017, 29(10):1252-1259.ZHAO T, DONG M, ZHAO Y, et al. Preparation and application of nano-sized metal-organic frameworks[J]. Progress in Chemistry, 2017,29(10):1252-1259.
    [8] WEN J, FANG Y, ZENG G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal organic frameworks:a review of studies from the last decade[J]. Chemosphere,2018, 201:627-643.
    [9] LUSTIG W P, MUKHERJEE S, DUDD N D, et al. Metal-organic frameworks:functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46:3242-3285.
    [10]冯丹,隗翠香,夏炎.功能化金属有机骨架材料去除饮用水污染物的研究进展[J].色谱, 2017, 35(3):237-244.FENG D, WEI C X, XIA Y. Progress in the applications of funcionalized metal-organic frameworks for adsorption and removal of pollutants in drinking water[J]. Chinese Journal of Chromatograghy,2017, 35(3):237-244.
    [11]张贺,李国良,张可刚,等.金属有机骨架材料在吸附分离研究中的应用进展[J].化学学报, 2017, 75:841-859.ZHANG H, LI G L, ZHANG K G, et al. Advances of metal-organic frameworks in adsorption and separation applications[J]. Acta Chimica Sinica, 2017, 75:841-859.
    [12] KOBIELSKA P A, HOWARTH A J, FARHA O K, et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews, 2018, 358:92-107.
    [13] MON M, BRUNO R, FERRANDO-SORIA J, et al. Metal-organic framework technologies for water remediation:towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 2018, 6:4912-4947.
    [14]李小娟,何长发,黄斌,等.金属有机骨架材料吸附去除环境污染物的进展[J].化工进展, 2016, 35(2):586-594.LI X J, HE C F, HUANG B, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J].Chemical Industry and Engineering Progress, 2016, 35(2):586-594.
    [15] CARBONI M, ABNEY C W, LIU S B, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013, 4:2396-2402.
    [16]姜宁,邓志勇,王公应,等.金属有机框架材料的制备及在吸附分离CO2中的应用[J].化学进展, 2014, 26(10):1645-1654.JIANG N, DENG Z Y, WANG G Y, et al. Preparation of metal-organic frameworks and application for CO2adsorption and separation[J].Progress in Chemistry, 2014, 26(10):1645-1654.
    [17]翟睿,焦丰龙,林虹君,等.金属有机框架材料的研究进展[J].色谱,2014, 32(2):107-116.ZHAI R, JIAO F L, LIN H J, et al. Progress in metal-organic frameworks[J]. Chinese Journal of Chromatography, 2014, 32(2):107-116.
    [18] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society,2008, 130:13850-13851.
    [19] LI H, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J].Nature, 1999, 402(6759):276-279.
    [20] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metalorganic frameworks[J]. Science, 2010, 329(5990):424-428.
    [21] FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36):15016-15021.
    [22]刘兵,介素云,李伯耿.金属有机框架化合物在非均相催化反应中的应用[J].化学进展, 2013, 25(1):36-45.LIU B, JIE S Y, Li B G. Metal-organic frameworks for heterogeneous catalysis[J]. Progress in Chemistry, 2013, 25(1):36-45.
    [23] SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zrbased metal-organic frameworks:from nano to single crystals[J].European Journal of Chemistry, 2011, 17:6643-6651.
    [24] KATZ M J, BROWN Z J, COLóN Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013,49:9449-9451.
    [25] CHEN L, BAI Z L, ZHU L, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework[J]. ACS Applied Materials&Interfaces, 2017, 9:32446-32451.
    [26] LI F B, LI X Y, CUI P, et al. Plasma-grafting amidoxime/metalorganic framework composites for the selective sequestration of U(Ⅵ)[J]. Environmental Science-Nano, 2018, 5(8):2000-2008.
    [27] LIU J M, LIU T, WANG C C, et al. Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53(Al)-AO for enhanced U(Ⅵ)sorption[J]. Journal of Molecular Liquids, 2017, 242:531-536.
    [28] BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks:design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45:2327-2367.
    [29] CANIVET J, EATEEVA A, GUO Y, et al. Water adsorption in MOFs:fundamentals and applications[J]. Chemical Society Reviews, 2014,43:5594-5617.
    [30] BURTCH N C, JASUJA H, WALTON K S, et al. Water stability and adsorption in metal organic frameworks[J]. Chemical Reviews, 2014,114:10575-10612.
    [31] HOWARTH A J, LIU Y Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1:1-15.
    [32] WANG C H, LIU X L, DEMIR N K, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18):5107-5134.
    [33] FENG M B, ZHANG P, ZHOU H C, et al. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides:a review[J]. Chemosphere, 2018, 209:783-800.
    [34] PARK K S, NI Z, C?TéA P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(27):10187-10191.
    [35] LIU X L, LI Y S, ZHU G Q, et al. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols[J]. Angewandte Chemie:International Edition, 2011, 50(45):10636-10639.
    [36] BARTHELET K, MARROT J, RIOU D, et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie:International Edition, 2002, 41(2):281-284.
    [37] SERRE C, MILLANGE F, THOUVENOT C, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids:MIL-53 or CrIII(OH)?{O2C-C6H4-CO2}?{HO2C-C6H4-CO2H}x?H2Oy[J]. Journal of the American Chemical Society, 2002, 124:13519-13526.
    [38] LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for the large breathing of the porous aluminum terephthalate(MIL-53)upon hydration[J]. European Journal of Chemistry, 2004, 10(6):1373-1382.
    [39] KHAN N A, HASA Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks(MOFs):a review[J]. Journal of Hazardous Materials, 2013, 244/245:444-456.
    [40] FéREY G, SERRE C, Caroline M-D, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie:International Edition,2004, 43, 6296-6301.
    [41] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309:2040-2042.
    [42]李正杰.金属-有机骨架材料气相分离性能的分子模拟研究[D].北京:北京化工大学, 2013.LI Z J. Molecular simulation study on the gas separation performance of metal-organic frameworks[D]. Beijing:Beijing University of Chemical Technology, 2013.
    [43] KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010,22:6632-6640.
    [44] WU H, CHUA Y S, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135:10525-10532.
    [45] FENG Y F, JIANG H, LI S N, et al. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 431:87-92.
    [46] FALAIS C, VOLKRINGER C, GIOVINE R, et al. Capture of actinides(Th4+,[UO2]2+)and surrogating lanthanide(Nd3+)in porous metalorganic framework MIL-100(Al)from water:selectivity and imaging of embedded nanoparticles[J]. Dalton Transactions, 2017, 46(36):12010-12014.
    [47] WU Y H, PANG H W, YAO W, et al. Synthesis of rod-like metalorganic framework(MOF-5)nanomaterial for efficient removal of U(Ⅵ):batch experiments and spectroscopy study[J]. Science Bulletin,2018, 63:831-839.
    [48] SU S Z, CHE R, LIU Q, et al. Zeolitic imidazolate framework-67:a promising candidate for recovery of uranium(Ⅵ)from seawater[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018, 547:73-80.
    [49] YUAN L Y, TIAN M, LAN J H, et al. Defect engineering in metalorganic frameworks:a new strategy to develop applicable actinide sorbents[J]. Chemical Communications, 2018, 54:370-373.
    [50] XIAO C L, SILVER M A, WANG S A. Metal-organic frameworks for radionuclide sequestration from aqueous solution:a brief overview and outlook[J]. Dalton Transactions, 2017, 46:16381-16386.
    [51] ZHENG T, YANG Z X, GUI D X, et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system[J]. Nature Communications, 2014, 8:15369.
    [52] LI L N, MA W, SHEN S S, et al. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal organic frameworks through post-synthetic strategy[J]. ACS Applied Materials&Interfaces, 2016, 8:31032-31041.
    [53] DECKER J D, CLERCQ J D, VERMEIR P, et al. Functionalized metal-organic-framework CMPO@MIL-101(Cr)as a stable and selective rare earth adsorbent[J]. Journal of Materials Science, 2016,51:5019-5026.
    [54] ZHAO Y G, WANG X, LI J X,et al. Amidoxime functionalization of mesoporous silica and its high removal of U(Ⅵ)[J]. Polymer Chemistry,2015, 6:5376-5384.
    [55] WANG Y, GU Z X, YANG J J, et al. Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(Ⅵ)[J]. Applied Surface Science, 2014, 320:10-20.
    [56] CHEN H, SHAO D D, LI J X, et al. The uptake of radionuclides from aqueous solution by poly(amidoxime)modified reduced graphene oxide[J]. Chemical Engineering Journal, 2014, 254:623-634.
    [57] SONG L L, CHEN C, LUO F, et al. Isoreticular MOFs functionalized in the pore wall by different organic groups for high-performance removal of uranyl ions[J]. Journal of Radioanalytical and Nuclear Chemistry,2016, 310:317-327.
    [58] LUO B C, YUAN L Y, CHAI Z F, et al. U(Ⅵ)capture from aqueous solution by highly porous and stable MOFs:UiO-66 and its amine derivative[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016,307:269-276.
    [59] LIU S J, LUO M B, LI J Q, et al. Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310:353-36.
    [60] TAO Y, YANG L X, LI J H, et al. A new azo metal-organic framework showing polycatenated 3D array and ultrahigh U(Ⅵ)removal[J].Journal of Solid State Chemistry, 2018, 266:244-249.
    [61] YANG L X, FENG X F, YIN W H, et al. Metal-organic framework containing both azo and amide groups for effective U(Ⅵ)removal[J].Journal of Solid State Chemistry, 2018, 265:148-154.
    [62] ZHANG J Y, ZHANG N, ZHANG L J, et al. Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr)nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies[J]. Scientific Reports, 2015, 5(13514):1-10.
    [63] ZHANG L, WANG L L, GONG L L, et al. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of UⅥions[J]. Journal of Hazardous Materials, 2016, 311:30-36.
    [64] LIU F T, SONG S S, CHENG G, et al. MIL-101(Cr)metal-organic framework functionalized with tetraethylenepentamine for potential removal of uranium(Ⅵ)from waste water[J]. Adsorption Science&Technology, 2018, 36(7/8):1550-1567.
    [65] BAI Z Q, YUAN L Y, ZHU L, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ)sorption[J]. Journal of Materials Chemistry A, 2015, 3:525-534.
    [66] WANG L L, LUO F, DANG L L, et al. Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide-and carboxyl-functionalized metal-organic framework[J].Journal of Materials Chemistry A, 2015, 3:13724-13730.
    [67] DECKER J D, FOLENS Kl, CLERCQ J D, et al. Ship-in-a-bottle CMPO in MIL-101(Cr)for selective uranium recovery from aqueous streams through adsorption[J]. Journal of Hazardous Materials, 2017,335:1-9.
    [68] MIN X, YANG W T, HUI Y F, et al. Fe3O4@ZIF-8:a magnetic nanocomposite for highly efficient UO22+adsorption and selective UO22+/Ln3+separation[J]. Chemical Communications., 2017, 53:4199-4202.
    [69] ALQADAMI A A, NAUSHAD M, ALOTHMAN Z A, et al. Novel metal-organic framework(MOF)based composite material for the sequestration of U(Ⅵ)and Th(Ⅳ)metal ions from aqueous environment[J]. ACS Applied Materials&Interfaces, 2017, 9(41):36026-36037.
    [70] ZHANG X M, LIU Y, JIAO Y, et al. Facile construction of Fe@zeolite imidazolate framework-67 to selectively remove uranyl ions from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91:309-315.
    [71] YANG P P, LIU Q, LIU J Y, et al. Interfacial growth of a metalorganic framework(UiO-66)on functionalized graphene oxide(GO)as a suitable seawater adsorbent for extraction of uranium(Ⅵ)[J]. Journal of Materials Chemistry A, 2017, 5(34):17933-17942.
    [72] WANG C H, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(Ⅵ)removal[J]. ACS Applied Materials&Interfaces, 2018, 10:24164-24171.
    [73] LI J, WU Z, DUAN Q Y, et al. Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(Ⅵ)[J]. Journal of Cleaner Production, 2018, 204:896-905.
    [74] FOTOVAT H, KHAJEH M, OVEISI A R, et al. A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(Ⅵ)[J]. Microchimica Acta, 2018,185:469-476.
    [75] LUSTIG W P, MUKHERJEE S, RUDD N D, et al. Metal-organic frameworks:functional luminescent and photonic materials for sensing applications[J]. Chemical Society Review, 2017, 46:3242-3285.
    [76] ZHANG Y M, YUAN S, DAY G, et al. Luminescent sensors based on metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018,35:28-45.
    [77] YANG W T, BAI Z Q, SHI W Q, et al. MOF-76:from a luminescent probe to highly efficient UVIsorption material[J]. Chemical Communications, 2013, 49:10415-10417.
    [78] LIU W, DAI X, BAI Z L, et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant Lewis basic sites:a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation[J]. Environmental Science&Technology,2017, 51:3911-3921.
    [79] CHEN W M, MENG X L, ZHANG G L, et al. A superior fluorescent sensor for Al3+and UO22+based on a Co(II)metal-organic framework with exposed pyrimidyl Lewis base site[J]. Journal of Materials Chemistry A, 2017, 5(25):13079-13085.
    [80] YE J W, BOGALE R F, SHI Y W, et al. A water-stable dual-channel luminescence sensor for UO22+ions based on an anionic terbium(Ⅲ)metal-organic framework[J]. Chemistry:A European Journal, 2017, 23(32):7657-7662.
    [81] ABNEY C W, TAYLOR-PASHOW K M L, RUSSELL S R, et al.Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration[J]. Chemistry of Materials, 2014, 26(18):5231-5243.
    [82] HUANG S Y, PANG H W, LI L, et al. Unexpected ultrafast and high adsorption of U(Ⅵ)and Eu(Ⅲ)from solution using porous Al2O3microspheres derived from MIL-53[J]. Chemical Engineering Journal,2018, 353:157-166.
    [83] LIU F T, XIONG W J, LIU J Y, et al. Novel amino-functionalized carbon material derived from metal organic framework:a characteristic adsorbent for U(Ⅵ)removal from aqueous environment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 556:72-80.
    [84] XIONG Y Y, LI J Q, YAN C S, et al. MOF catalysis of FeII-to-FeIII reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(Ⅵ)reduction by iron(Ⅱ)under ambient conditions[J]. Chemical Communications, 2016, 52(61):9538-9541.
    [85] LI J Q, GONG L L, FENG X F, et al. Direct extraction of U(Ⅵ)from alkaline solution and seawater via anion exchange by metal-organic framework[J]. Chemical Engineering Journal, 2017, 316:154-159.
    [86] LI J, WANG X X, ZHAO G X, et al. Metal-organic framework-based materials:superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47:2322-2356.
    [87] HU R, WANG X K, DAI S Y, et al. Application of graphitic carbon nitride for the removal of Pb(Ⅱ)and aniline from aqueous solutions[J].Chemical Engineering Journal, 2015, 260:469-477.
    [88] ZHANG H, XUE J H, HU N, et al. Selective removal of U(Ⅵ)from low concentration wastewater by functionalized HKUST-1@H3PW12O40[J].Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(3):865-875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700