用户名: 密码: 验证码:
Ag掺杂ZnO缺陷形成能的第一性原理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-Principles Study on the Defect Formation Energy of Ag-doped ZnO
  • 作者:周嘉 ; 王欢 ; 牛丽
  • 英文作者:Zhou Jia;Wang Huan;Niu Li;Harbin Normal University,School of Physics and Electronic Engineering,Key Laboratory for Photomic and Electronic Bandgap Materials of Ministry of Education;
  • 关键词:Ag掺杂ZnO ; 缺陷形成能 ; 跃迁能级 ; 第一性原理
  • 英文关键词:Ag-doped ZnO;;Defect formation energy;;Transition level;;First-principles
  • 中文刊名:HEBY
  • 英文刊名:Natural Science Journal of Harbin Normal University
  • 机构:哈尔滨师范大学光电帯隙省部共建教育部重点实验室;
  • 出版日期:2017-10-15
  • 出版单位:哈尔滨师范大学自然科学学报
  • 年:2017
  • 期:v.33
  • 基金:国家自然科学基金(11247252)
  • 语种:中文;
  • 页:HEBY201705007
  • 页数:6
  • CN:05
  • ISSN:23-1190/N
  • 分类号:33-38
摘要
采用基于密度泛函理论的第一性原理方法,研究了在富氧和富锌条件下单原子Ag和多原子Ag掺杂ZnO的缺陷形成能.结果表明:在富氧条件下单原子掺杂时,AgZn缺陷形成能低于AgO和Agi的形成能,说明杂质Ag最可能以替代Zn位出现;由AgZn能级跃迁图发现,富氧条件下Ag-1Zn没有电子态间的跃迁,由此获得的P型半导体更加稳定;无论在富氧还是富锌的条件下,随着Ag掺杂浓度的增加,ZnO的缺陷形成能也增加,说明不易形成多原子的替位掺杂.在两个原子掺杂时,聚集型掺杂比分散型掺杂形成能要低,说明Ag替Zn位掺杂易产生聚集型缺陷.三个原子的聚集型掺杂比两个原子的分散型掺杂的形成能低,推测出多原子Ag替Zn位掺杂聚集型缺陷更容易产生.
        The defect formation energies of single and multiple Ag-doped ZnO under oxygen-rich and zinc-rich conditions have been calculated using first-principles density-functional theory methods. The results show that the defect formation energy of single AgZnis lower than that of AgOand Agiunder oxygen-rich conditions. It indicates the Ag-impurity atom is most likely to replace Zn. The Ag-1 Znacceptor transition energy level reveals that there is no transition between charged states under the oxygen-rich condition,so the obtained p-type semiconductor is more stable. The defect formation energies of ZnO increase obviously with the Ag doping concentration under both oxygen-rich and zinc-rich conditions,indicating that it is not easy to form multiple atom doping. When two AgZnatoms are doped,the formation energies of aggregated doping are lower than those of the dispersed doping,indicating that the substitutional Ag atoms are easy to cause aggregation-type defects. The formation energies of aggregated doping with three atoms is less than dispersed doping with two atoms. The results suggest that multiple Ag replaced Zn atoms may be easier to produce aggregation-type defects.
引文
[1]zgur,Alivov Y I,Liu C.A comprehensive review of Zn O materials and devices[J].J Appl Phys,2005,98:041301.
    [2]Look D C.Recent advances in Zn O materials and devices[J].Materials Science and Engineering,2001,80,383.
    [3]Ohta H,Kawamura K,Orita M,et al.Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-Zn O[J].Appl Phys Lett,2000,77:475-477.
    [4]Athavan Nadarajah,Robert C,Word,et al.Flexible Inorganic Nanowire Light-Emitting Diode.Nano Lett,2008,8(2),534–537.
    [5]Frimpong R A,Hilt J Z.Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization[J].Nanotechnology,2008,19(17):175101.
    [6]Law M,Greene L E,Johnson J C,et al.Nanowire dye-sensitized solar cells.Nature Materials,2005,4(6):455–459.
    [7]陈琨,范广涵,章勇,等.N掺杂P-型Zn O的第一性原理计算[J].物理化学学报,2008(1):61-66.
    [8]Yan Y,Al-Jassim M M,Wei S H.Doping of Zn O with group-IB elements.Appl Phys.Lett,2006,89,181912.
    [9]段壮芬,王新强,何阿玲,等.贵金属(Cu、Ag、Au)掺杂Zn O电子结构和光学性质的第一性原理研究[J].原子与分子物理学报,2011,28(2):343-351.
    [10]Fan J,Freer R.The roles played by Ag and Al dopants in controlling the electrical properties of Zn O va-ristors.Journal of Applied Physics,1995,77:4795-4800.
    [11]Kang HS,Ahn BD,Kim JH,et al.Structural,electrical,and optical properties of p-type Zn O thin films with Ag dopant.Appl Phys Lett,2006,88:202108.
    [12]In Soo Kim,Eun-Kyung Jeong,Do Yun Kim,et al.Investigation of p-type behavior in Ag-doped Zn O thin films by E-beam evaporation[J].Applied Surface Science,2009,255:4011-4014.
    [13]Yan Y,Al-Jassim M M,Wei S H.Doping of Zn O by group-IB elements[J].Applied Physics Letters,2006,89:181912.
    [14]Volnianska O,Boguslawski P,Kaczkowski J.Theory of doping properties of Ag acceptors in Zn O.Phys Rev,2009,80,245212.
    [15]Janotti A,Van de Walle C G.Native Point Defects in Zn O.Physical Review B,2007,76:165202.
    [16]Kresse G,Joubert D.From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method.Physical Review B,1999,59:1758-1775.
    [17]Perdew JP,Burke K,Ernzerhof M.Generalized gradient approximation made simple.Physical Review Letters.1996,77:3865-3868.
    [18]Dean J A.Book Review:Lange’s Handbook of Chemistry.14th Edition.New York:Mc Graw-Hill,1992.
    [19]Mattila T,Nieminen R M.Point-defect complexes and broadband luminescence in Ga N and Al N.Phys Rev B,1997,55,9571.
    [20]zgurü,Alivov Y I,Liu C.A comprehensive review of Zn O materials and devices.J Appl Phys,2005,98:041301.
    [21]Madelung O.Semiconductors-Basic Data[M].1996.1-84.
    [22]秦盈星,符斯列,蒋联娇,等.Mn掺杂浓度对Mn-N共掺Zn O电子结构及磁性的影响[J].功能材料,2017,48(10):10094-10098.
    [23]林传金,朱梓忠.Zn O中氧空位缺陷形成能的第一性原理研究[J].厦门大学学报:自然科学版,2017,56(4):486-491.
    [24]Chris G,Van de Walle,J9rg Neugebauer.First-Principles Calculations for Defects and Impurities:Applications toⅢ-Nitrides.Journal of Applied Physics,2004,95:3851-3879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700