用户名: 密码: 验证码:
激光熔化沉积AlSi10Mg成形特性及力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formability and Mechanical Property of Laser Metal Deposited AlSi10Mg Alloy
  • 作者:李俐群 ; 曲劲宇 ; 王宪
  • 英文作者:LI Li-qun;QU Jin-yu;WANG Xian;State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology;
  • 关键词:AlSi10Mg ; 激光熔化沉积 ; 增材制造 ; 成形 ; 组织 ; 力学性能
  • 英文关键词:AlSi10Mg;;laser metal deposition;;additive manufacturing;;formability;;microstructure;;mechanical property
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:哈尔滨工业大学先进焊接与连接国家重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201906042
  • 页数:6
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:346-351
摘要
目的研究激光熔化沉积Al Si10Mg铝合金的成形特性及力学性能。方法以颗粒度45~105μm的Al Si10Mg粉末为材料,6061铝合金为基板,利用光纤激光器在充氩舱内分别进行单层单道、竖直薄壁单墙体与倾斜薄壁墙体的成形试验。测试单墙体的抗拉强度与延伸率,并通过扫描电子显微镜和光学显微镜对微观组织形貌进行分析。结果单层单道沉积层高度与激光扫描速度负相关,与送粉速度成线性正相关;而沉积层宽度与扫描速度负相关,与激光功率正相关。沉积单墙体时,沉积前10层最不稳定,墙体厚度低于后续层的厚度。为了使沉积过程稳定,墙体不塌陷,通过激光功率在前20层左右逐层递减,成功制备出250层(高10cm)以上的单墙体。工艺选取合适时,AlSi10Mg具有良好的成形能力,激光头角度保持竖直不变,墙体倾角60°以下可以稳定沉积。制备沉积态Al Si10Mg气孔率约3%,抗拉强度250MPa左右,延伸率5%以上,抗拉强度高于成分相似的ZL104铸件25%。微观组织内Al-Si共晶细小,没有针片状共晶组织,并且组织沿沉积方向呈现周期性变化。结论 Al Si10Mg在激光熔化沉积时具有良好的成形能力,沉积态的组织强度高于铸态组织强度。优化后的工艺可以稳定沉积制备下圆上方的变截面薄壁样件。
        The work aims to study the formability and mechanical property of laser metal deposited Al Si10 Mg alloy.AlSi10 Mg powder with size ranging from 45 to 105 μm was utilized as the material and 6061 aluminum alloy was used as the substrate. Single-layer cladding, thin walls and inclined walls were manufactured with fiber laser in argon chamber to test the formability. The tensile strength and elongation of the walls were tested. The microstructure was analyzed with optical microscope and SEM. There was a positive correlation between the height of single layer and powder feeding speed, but a negative correlation with the scanning speed. Further, the same correlation also existed between the width of single layer and laser power and between the width and the scanning speed. When single-layer wall was deposited, the first 10 layers were not stable. The thickness of wall was thinner than subsequent layers. For the sake of improving the stability and preventing from collapse of walls, laser power should decline gradually in the first 20 layers. With this method, a wall more than 250 layers was made steadily and successfully. AlSi10 Mg had good formability when process parameters were selected properly. Inclined walls could be deposited even if the wall had tilted to 60 degree. The porosity of the walls was nearly 3%. The tensile strength was approximately 250 MPa and the elongation was about 5%. The tensile strength was 25% higher than that of ZL104 as-casted aluminum alloy. The microstructure periodically varied along the deposition direction. The eutectic was small and no needle-like eutectic was found.The AlSi10 Mg has good formability in laser metal deposition process. The microstructure strength of as-deposited samples is better than as-casted alloy. Finally, a variable cross-section thin-walled sample is deposited with optimized processing parameters.
引文
[1]王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J].中国激光,2009,36(12):3204-3209.WANG Hua-ming,ZHANG Shu-quan,WANG Xiangming.progress and challenges of laser direct manufacturing of large titanium structural components(invited paper)[J].Chinese journal of lasers,2009,36(12):3204-3209.
    [2]陈博,邵冰,刘栋,等.热处理对激光熔化沉积TC17钛合金显微组织及力学性能的影响[J].中国激光,2014,41(4):57-63.CHEN Bo,SHAO Bing,LIU Dong,et al.Effect of heat treatment on microstructure and mechanical properties of laser melting deposited TC17 titanium alloy[J].Chinese journal of lasers,2014,41(4):57-63.
    [3]常帅.IN718高温合金光纤激光增材制造技术研究[D].哈尔滨:哈尔滨工业大学,2013.CHANG Shuai.Research on fiber laser additive manufacturing technology of IN718 superalloy[D].Harbin:Harbin Institute of Technology,2013.
    [4]黄卫东,林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展,2010,29(6):12-27.HUANG Wei-dong,LIN Xin.Research progress in laser solid forming of high performance metallic component[J].Materials China,2010,29(6):12-27.
    [5]蒲以松,王宝奇,张连贵.金属3D打印技术的研究[J].表面技术,2018,47(3):78-84.PU Yi-song,WANG Bao-qi,ZHANG Lian-gui.Metal 3Dprinting technology[J].Surface technology.2018,47(3):78-84.
    [6]DING Y,MUNIZ-LERMA J,TRASK M,et al.Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J].MRS bulletin,2017,41(10):745-751.
    [7]ABOULKHAIR N T,MASKERY I,TUCK C,et al.The microstructure and mechanical properties of selectively laser melted AlSi10Mg:The effect of a conventional T6-like heat treatment[J].Materials science&engineering A,2016,667:139-146.
    [8]TODD I.Metallurgy:No more tears for metal 3D printing[J].Nature,2017,549(7672):342-343.
    [9]DINDA G P,DASGUPTA A K,BHATTACHARYA S,et al.Microstructural characterization of laser-deposited Al4047 alloy[J].Metallurgical&materials transactions A,2013,44(5):2233-2242.
    [10]DINDA G P,DASGUPTA A K,MAZUMDER J.Evolution of microstructure in laser deposited Al-11.28%Si alloy[J].Surface&coatings technology,2012,206(8):2152-2160
    [11]JAVIDANI M,ARREGUIN-ZAVALA J,DANOVITCHJ,et al.Additive manufacturing of AlSi10Mg alloy using direct energy deposition:Microstructure and hardness characterization[J].Journal of thermal spray technology,2017,26(4):587-597.
    [12]CHEN B,YAO Y Z,SONG X G,et al.Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J].Ferroelectrics,2018,523(1):153-166.
    [13]SINGH A,RAMAKRISHNAN A,DINDA G.Fabrication of Al-11.2Si components by direct laser metal deposition for automotive applications[J].Journal of welding and joining.2017,35(4):67-73.
    [14]丁莹,杨海欧,白静,等.激光立体成形Al Si10Mg合金的微观组织及力学性能[J].中国表面工程,2018,31(4):52-60.DING Ying,YANG Hai ou,BAI Jing,et al.Microstructure and mechanical property of AlSi10Mg alloy prepared by laser solid forming[J].China surface engineering,2018,31(4):52-60.
    [15]GB/T 1173-2013,铸造铝合金[S].GB/T 1173-2013,Casting aluminum alloy[S].
    [16]ASTM B85/B85M-14,ASTM committee B07 on light metal and alloy.Standard specification for aluminumalloy die casting[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700