用户名: 密码: 验证码:
钛合金中α片层球化分数敏感性分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sensitivity analysis on globularized fraction of α lamellae in titanium alloys
  • 作者:罗皎 ; 王博哲 ; 王林风 ; 李莲 ; 李淼泉
  • 英文作者:Jiao LUO;Bo-zhe WANG;Lin-feng WANG;Lian LI;Miao-quan LI;School of Materials Science and Engineering, Northwestern Polytechnical University;
  • 关键词:钛合金 ; 敏感性分析 ; 球化分数 ; 遗传算法
  • 英文关键词:titanium alloys;;sensitivity analysis;;globularized fraction;;genetic algorithm
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:西北工业大学材料学院;
  • 出版日期:2019-02-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(51575446) supported by the National Natural Science Foundation of China;; Project(2016JQ5070) supported by the Natural Science Basis Research Plan of Shaanxi Province,China;; Project(2017KJXX-27) supported by the Youth Science and Technology New Star Plan of Shaanxi Province,China;; Project(3102017AX003) supported by the Fundamental Research Funds for the Central Universities,China
  • 语种:英文;
  • 页:ZYSY201902009
  • 页数:8
  • CN:02
  • ISSN:43-1239/TG
  • 分类号:78-85
摘要
基于机理型微观组织模型与梯度算法建立钛合金中α片层球化分数敏感性分析函数,将该函数应用于TC17合金中片层组织球化分数的敏感性分析。基于扫描电镜观测结果定量分析TC17合金等温压缩过程中工艺参数对球化分数的影响规律,并采用遗传算法优化其敏感性分析函数的材料参数。结果表明:当变形温度为1083 K、应变速率为0.01 s~(-1)、应变为1.2时,TC17合金片层α组织几乎完全转变为等轴α晶粒;随着应变速率的增加,片层α球化分数减少,这主要因为较低的应变速率为动态球化提供了足够的时间;而变形温度对片层α球化分数的影响受应变速率控制。此外,TC17合金片层α球化分数关于应变、变形温度和对数应变速率微分的预测结果与试验结果相吻合。
        The sensitivity analysis functions on globularized fraction of α lamellae were established using a physically-based microstructure model and gradient method. These functions were applied to the sensitivity analysis on globularized fraction of αlamellae in TC17 alloy. The material constants in these functions are determined using the genetic algorithm-based objective optimization technique. The globularized fraction of α lamellae during isothermal compression of TC17 alloy was quantitatively analyzed based on scanning electron microscopy(SEM) observation. The results show that α lamellae mostly change to equiaxed αgrains at a deformation temperature of 1083 K, a strain rate of 0.01 s~(-1) and a strain of 1.2. The globularized fraction decreases with increasing strain rate because lower strain rate provides enough time for the spheroidization. The effect of deformation temperature on the globularized fraction is controlled by the strain rate. And, the predicted derivations of globularized fraction with respect to processing parameters show good agreement with the experimental values.
引文
[1]GAO Peng-fei,YANG He,FAN Xiao-guang,LEI Zhen-ni,CAIYang.Prediction of tri-modal microstructure under complex thermomechanical processing history in isothermal local loading forming of titanium alloy[J].Transactions of Nonferrous Metals Society of China,2017,27:2423-2433.
    [2]LAN Chun-bo,LI Guo,WU Yu,GUO Li-li,CHEN Feng.Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications[J].Transactions of Nonferrous Metals Society of China,2017,27:1537-1542.
    [3]TARZIMOGHADAM Z,SANDL?BES S,PRADEEP K G,RAABED.Microstructure design and mechanical properties in a near-αTi-4Mo alloy[J].Acta Materialia,2015,97:291-304.
    [4]LI Hui-min,LI Miao-quan,LUO Jiao,WANG Ke.Microstructure and mechanical properties of heat-treated Ti-5Al-2Sn-2Zr-4Mo-4Cr[J].Transactions of Nonferrous Metals Society of China,2015,25:2893-2900.
    [5]GUAN Jing,WANG Guang-chun,ZHAO Guo-qun.The microstructure optimal design using sensitivity analysis methods in forging process[J].Journal of Plasticity Engineering,2007,14:6-10.
    [6]KOHAR C P,BASSANI J L,BRAHME A,MUHAMMAD W,MISHRA R K,INAL K.A new multi-scale framework to incorporate microstructure evolution in phenomenological plasticity:Theory,explicit finite element formulation,implementation and validation[J].International Journal of Plasticity,Available Online,DOI:http://doi.org/10.1016/j.ijplas.2017.08.006.
    [7]FULLWOOD D T,NIEZGODA S R,ADAMS B L,KALIDINDI SR.Microstructure sensitive design for performance optimization[J].Progress in Materials Science,2010,55:477-562.
    [8]McDOWELL D L,DUNNE F P E.Microstructure-sensitive computational modeling of fatigue crack formation[J].International Journal of Fatigue,2010,32:1521-1542.
    [9]SONG Hong-wu,ZHANG Shi-hong,CHENG Ming.Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure[J].Journal of Alloys and Compounds,2009,480:922-927.
    [10]SELLARS C M,ZHU Q.Microstructural modelling of aluminium alloys during thermomechanical processing[J].Materials Science and Engineering A,2000,280:1-7.
    [11]ROBERTS W,BODEN H,AHLBLOM B.Dynamic recrystallization kinetics[J].Metal Science Journal,2013,13:195-205.
    [12]SHEWMON P G.Transformation in metals[M].New York:McGraw-Hill,1969.
    [13]DING R,GUO Z X.Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach[J].Computational Materials Science,2002,23:209-218.
    [14]FAN Xiao-guang,YANG He,GAO Peng-fei,ZUO Rui,LEIPeng-hui,JI Zhe.Morphology transformation of primary stripαphase in hot working of two-phase titanium alloy[J].Transactions of Nonferrous Metals Society of China,2017,27:1294-1305.
    [15]MIRONOV S,MURZINOVA M,ZHEREBTSOV S,SALISHCHEVG A,SEMIATIN S L.Microstructure evolution during warm working of Ti-6Al-4V with a colony-αmicrostructure[J].Acta Materialia,2009,57:2470-2481.
    [16]WEISS I,FROES F H,EYLON D,WELSCH G E.Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing[J].Metallurgical Transactions A,1986,17:1935-1947.
    [17]LUO Jiao,LI Miao-quan,LI Xiao-li,SHI Yan-pei.Constitutive model for high temperature deformation of titanium alloys using internal state variables[J].Mechanics of Materials,2010,42:157-165.
    [18]LIN J,YANG J B.GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys[J].International Journal of Plasticity,1999,15:1181-1196.
    [19]KIM J H,SEMIATIN S L,LEE C S.Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure[J].Acta Materialia,2003,51:5613-5626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700