用户名: 密码: 验证码:
氨基碳纳米管/DOPO衍生物的协效阻燃及其对尼龙6性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergistic Flame Retardancy of Amine-based Multi-walled Carbon Nanotubes/DOPO Derivatives and Its Effect on the Properties of Nylon 6
  • 作者:王欣欣 ; 何文涛 ; 徐国敏 ; 龙丽娟 ; 黄伟江 ; 于杰
  • 英文作者:Xin-xin Wang;Wen-tao He;Guo-min Xu;Li-juan Long;Wei-jiang Huang;Jie Yu;College of Materials and Metallurgy, Guizhou University;National Engineering Research Center for Compounding and Modification of Polymer Materials;
  • 关键词:氨基碳纳米管 ; DOPO衍生物 ; 尼龙6 ; 热稳定性 ; 协效阻燃
  • 英文关键词:Amine-based multi-walled carbon nanotubes;;DOPO derivatives;;Nylon 6;;Thermal stability;;Synergistic flame retardant
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:贵州大学材料与冶金学院;国家复合改性聚合物材料工程技术研究中心;
  • 出版日期:2019-02-26 14:07
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:黔科合人才团队(项目号[2015]4006)资助
  • 语种:中文;
  • 页:GFXB201904012
  • 页数:10
  • CN:04
  • ISSN:11-1857/O6
  • 分类号:101-110
摘要
将DOPO衍生物(DIDOPO)和氨基碳纳米管(MWCNTs)以一定的比例进行复配,添加到尼龙6(PA6)中熔融共混制得复合材料.运用万能试验机、热重分析仪、示差扫描量热仪、锥形量热仪及扫描电镜测试了各样本的力学性能、热稳定性、结晶性以及燃烧性能,并观察了炭层形貌.测试结果表明,加入MWCNTs后,复合材料的拉伸强度显著增强,与PA6/DIDOPO复合材料相比,其拉伸强度平均提升了55%.从非等温结晶曲线可以看出,加入MWCNTs后PA6复合材料的结晶初始温度(Tonset)和结晶峰温(Tc)都有明显提高,但由于MWCNTs的异相成核作用,结晶度降低.此外,锥形量热测试表明,当MWCNTs的添加量为2 wt%时,其热释放速率峰值(PHRR)为367.28 kW/m2,较纯PA6降低了58.9%.扫描电镜和拉曼测试分析表明MWCNTs的加入促进了致密结构炭层的形成,与DIDOPO有协效阻燃的作用.
        A novel DOPO derivative(DIDOPO) is incorporated together with amine-based multi-walled carbon nanotubes(MWCNTs) into PA6 by melt blending. Mechanical properties, thermal stability, crystallinity, and combustion properties are measured using universal testing machine, thermogravimetric analyzer, differential scanning calorimeter, and cone calorimeter, respectively. After combustion, the morphology of char layer is further observed by a scanning electron microscope. The results show that MWCNTs-incorporated flame-retardant nanocomposites exhibit a tensile strength that is 55% higher than that of the PA6/DIDOPO composites. From the TG and DTG curves, it can be seen that the T5 wt% of PA6 composites increased slightly and the maximum weight loss rate temperature(Tmax) gradually improved after adding MWCNTs, indicating that the addition of MWCNTs delays the process of thermal degradation of the PA6 composites. With the incorporation of MWCNTs, the amount of residual carbon is also increased. From the non-isothermal crystallization curve, it can be seen that the crystallization initial temperature(Tonset) and crystallization peak temperature(Tc) of the PA6 composites are significantly improved with the addition of MWCNTs. However, the crystallinity is lower due to the heterogeneous nucleation of the MWCNTs. From UL-94 datas, the combustion time(t1 + t2) is increased with the incorporation of MWCNTs into PA6/DIDOPO composites, which results in a V-1 level in the UL-94 test and a slightly increased LOI value. This phenomenon can be attributed to an increment in melt viscosity and a decrement in flow properties. Combined with the curves of effective combustion heat, total smoke release and CO release rate, it can be concluded that the synergistic effect between MWCNTs and DIDOPO weakens the thermal degradation process of the PA6 composites, thus increasing the incomplete combustion and reducing the complete combustion of the PA6 composites, which is beneficial to the flame retardance of the materials. Addition of 2 wt%MWCNTs results in a peak heat release rate(PHRR) of 367.28 kW/m~2, which corresponds to a 58.9% lower rate than that of pure PA6, as revealed by cone calorimetry. Based on SEM and Raman, a continuous and compact char layer is observed upon addition of MWCNTs, which is ascribed to a synergistic effect between MWCNTs and DIDOPO.
引文
1Vahabi H,Lopez-Cuesta J M,Chivas-Joly C.Novel Fire Retardant Polymers&Composite Materials.France:WoodheadPublishing,2017.147-170.
    2Salmeia K A,Gaan S.Polym Degrad Stab,2015,113:119-134
    3Buczko A,Stelzig T,Bommer L,Rentsch D,Heneczkowski M,Gaan S.Polym Degrad Stab,2014,107(4):158-165
    4Xie M C,Zhang S M,Ding Y F,Wang F,Liu P,Tang H Y,Wang Y T,Yang M S.J Appl Polym Sci,2017,134(22):1-11
    5Long L J,Yin J B,He W T,Qin S H,Yu J.Ind Eng Chem Res,2016,55(40):10803-10812
    6Beyer G.Fire Mater,2002,26(6):291-293
    7Li J,Fang Z P,Tong L F,Gu A J,Liu F.J Appl Polym Sci,2007,106(5):2898-2906
    8Chang Q F,Long L J,He W T,Qin S H,Yu J.Thermochim Acta,2016,639:84-90
    9Weng S P,Xu Y Z,Fourier Transform Infrared Spectroscopy.Beijing:Chemical Industry Press,2010.41-42
    10Li J,Fang Z P,Tong L F,Gu A J,Liu F.J Polym Sci,Part B:Polym Phys,2006,44(10):1499-1512
    11Li J,Ke C H,Fang K Y,Fan X Y,Guo Z H,Fang Z P.J Macromol Sci Part B Phys,2010,49(3):405-418
    12Schartel B P,P?tschke,Knoll U,Abdel-Goadb M.Eur Polym J,2005,41(5):1061-1070
    13Xin Fei(辛菲),Wang Xiangdong(王向东),Xu Guozhi(许国志),Jiang Xuan(蒋玄),An Chuantao(安传涛).Plastics(塑料),2012,41(4):64-68
    14Zhao B,Chen L,Long J W,Chen H B,Wang Y Z.Ind Eng Chem Res,2013,52(8):2875-2886
    15Xing W Y,Yang W,Yang W J,Hu Q H,Si J Y,Lu H D,Yang B H,Song L,Hu Y,Richard K.K ACS Appl MaterInterfaces,2016,8(39):A-I
    16Levchik S V,Weil E D.J Fire Sci,2006,24(5):345-364
    17Kashiwagi T,Du F,Winey K I,Groth K M,Shields J R,Bellayer S P,Kim H,Douglas J F.Polymer,2005,46(2):471-481
    18Yang Dian(杨典),Lu Chang(陆昶),Tang Tan(唐坦),Zhang Chunhui(张春晖),Ma Qingyan(马晴岩),Huang Xinhui(黄新辉),Zhang Yuqing(张玉清).Chinese Journal of Materials Research(材料研究学报),2016,(3):199-208
    19Wang Fang(王芳),Hao Jianwei(郝建薇),Li Zhuoshi(李茁实),Zou Hongfei(邹红飞).Acta Polymerica Sinica(高分子学报),2016,(7):860-870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700