用户名: 密码: 验证码:
西南喀斯特小流域地表、地下河流细粒泥沙来源的~(137)Cs和磁化率双指纹示踪研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tracing Fine Sediment Sources in the Surface and Subsurface Rivers of a Karst Watershed Using Compound Fingerprinting with ~(137)Cs and Magnetic Susceptibility in Southwest China
  • 作者:程倩云 ; 彭韬 ; 张信宝 ; 曹乐 ; 王世杰
  • 英文作者:CHENG Qianyun;PENG Tao;ZHANG Xinbao;CAO Le;WANG Shijie;State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Puding Karst Ecosystem Research Station, Chinese Academy of Sciences;Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Ministry of Water Resources;
  • 关键词:泥沙来源 ; 指纹示踪 ; ~(137)Cs ; 磁化率 ; 西南喀斯特 ; 小流域 ; 关键带
  • 英文关键词:sediment source;;fingerprinting tracing;;~(137)Cs;;magnetic susceptibility;;Southwest Karst;;small watershed;;the critical zone
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学;中国科学院普定喀斯特生态系统观测研究站;中国科学院水利部成都山地灾害与环境研究所;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.161
  • 基金:国家重点研发计划项目(2016YFC0502602);; 国家自然科学基金项目(41571130074,U1612441,41403112);; 国际伙伴计划项目(132852KYSB20170029);; 贵州省科技厅项目(黔科合人才平台[2018]5405)
  • 语种:中文;
  • 页:TRQS201902023
  • 页数:7
  • CN:02
  • ISSN:61-1362/TV
  • 分类号:142-147+156
摘要
在黔中喀斯特高原农林复合生态系统峰丛谷地小流域,利用~(137)Cs和磁化率双指纹因子对碳酸盐岩表层土壤(坡地和坝地)、深层土壤(沟道和洞穴/裂隙)以及碎屑岩夹层岩屑3类来源开展指纹特征分析,通过多元混合模型对流域暴雨过程侵蚀悬移质泥沙进行指纹复合示踪,并计算小流域地表及地下出口输出泥沙的主要来源及相对贡献率。结果表明:~(137)Cs和磁化率在碳酸盐岩表层土壤、深层土壤以及碎屑岩夹层岩屑3类来源存在显著差异,流域内表层土壤、深层土壤和碎屑岩夹层岩屑的~(137)Cs和磁化率平均含量分别为3.39 Bq/kg和310.07×10~(-8) m~3/kg、0.50 Bq/kg和180.69×10~(-8) m~3/kg、0 Bq/kg和7.02×10~(-8) m~3/kg。表层土壤、深层土壤和碎屑岩夹层岩屑对流域地表出口泥沙的相对贡献分别为16.2%,4.3%和79.5%,拟合优度为99.97%;表层土壤、深层土壤和碎屑岩夹层岩屑对流域地下出口泥沙的相对贡献分别为<0.1%,37.9%和62.1%,拟合优度为83.80%。喀斯特流域泥沙来源区别于其他碎屑岩流域具有的特点为:(1)碳酸盐岩风化表层土壤来源少,对河流泥沙贡献小,主要贡献于地表河流。(2)无论流域地表出口还是地下出口,河流泥沙来源主要为流域中碳酸盐岩所夹的少量(地面物质组成<10%)的碎屑岩夹层岩屑。(3)深层土壤略有贡献,地下河流贡献比例高于地表河流。另外,~(137)Cs和磁化率可作为双指纹示踪物较好地示踪喀斯特小流域地表、地下河流泥沙来源和确定相对贡献率。
        In a small watershed with a typical agro-forest complex ecosystem and peak-cluster valley landform of the central Guizhou,~(137)Cs and magnetic susceptibility were used as compound fingerprinting factors to analyze the fingerprint characteristics of carbonate rock surface soil(from hill slopes and depressions), deep soil(from river bank or fissures and grikes), and clastic rock pieces. A multivariate mixing model was used to trace the probable sources of suspended sediment in discharge generated during rainstorm events, and calculate the main source and the relative contribution of the sediment from surface and underground outlets of small watershed. The results showed that the concentration of ~(137)Cs and magnetic susceptibility were significantly different in the three types of sources. The average ~(137)Cs and magnetic susceptibility values of surface soil, deep soil and clastic rock pieces were 3.39 Bq/kg and 310.07×10~(-8) m~3/kg, 0.50 Bq/kg and 180.69×10~(-8) m~3/kg, 0 Bq/kg and 7.90×10~(-8) m~3/kg, respectively. The relative contributions of surface soil, deep soil and clastic rock pieces to the sediments of the surface outlet were 16.2%, 4.3% and 79.5%, respectively, and the goodness of model fit was 99.97%. The relative contributions of surface soil, deep soil and clastic rock pieces to the sediments of the underground outlet were less than 0.1%, 37.9% and 62.1%, respectively, and the goodness of model fit was 83.80%. The sediment sources in this karst watershed differed from those in typical non-karst terrain, the specific characteristics were:(1) The sediment from carbonate surface soil was few, and carbonate surface soil contributed mainly to the surface water system, while contributed little to river sediment;(2) Clastic rock pieces were the primary source of both surface and underground river sediments;(3) Deep soil contributed slightly, and it contributed more to underground rivers than to surface rivers. In addition,~( 137)Cs and magnetic susceptibility could be used as compound fingerprinting tracers to trace the sediment source of the surface and subsurface rivers in this karst area, and also could be applied to determine the relative contribution rate of sediment sources.
引文
[1] 蒋忠诚,曹建华,杨德生,等.西南岩溶石漠化区水土流失现状与综合防治对策[J].中国水土保持科学,2008,6(1):37-42.
    [2] 王腊春,蒙海花,张兆干,等.贵州典型岩溶小流域水文水资源研究[M].北京:科学出版社,2010:65-68.
    [3] 袁道先,刘再华,蒋忠诚,等.碳循环与岩溶地质环境[M].北京:科学出版社,2003.
    [4] Wang S J, Liu Q M, Zhang D F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation[J].Land Degradation and Development,2004,15(2):115-121.
    [5] 彭韬,王世杰,张信宝,等.喀斯特坡地地表径流系数监测初报[J].地球与环境,2008,36(2):125-129.
    [6] 彭韬,杨涛,王世杰,等.喀斯特坡地土壤流失监测结果简报[J].地球与环境,2009,37(2):126-130.
    [7] Peng T, Wang S J. Effects of land use, land cover and rainfall regime on the surface runoff and soil loss on karst slopes in southwest China[J].Catena,2012,90:53-62.
    [8] Chen H S, Liu J W, Zhang W, et al. Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China[J].Environmental Earth Sciences,2012,66(1):371-379.
    [9] 方胜,彭韬,王世杰,等.喀斯特坡地土壤稳渗率空间分布变化特征研究[J].地球与环境,2014,42(1):1-10.
    [10] 罗为群,蒋忠诚,欧阳然,等.典型岩溶峰丛洼地水土保持技术研究[J].中国水土保持,2013(1):37-41.
    [11] 张信宝,王世杰,贺秀斌,等.碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J].地球与环境,2007,35(3):202-206.
    [12] 彭旭东,戴全厚,杨智,等.喀斯特山地石漠化过程中地表地下侵蚀产沙特征[J].土壤学报,2016,53(5):1237-1248.
    [13] 伏文兵,戴全厚,严友进.喀斯特坡耕地及其浅层孔(裂)隙土壤侵蚀响应试验研究[J].水土保持学报,2015,29(2):11-16.
    [14] 王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑:地球科学),1999(5):441-449.
    [15] 张信宝,白晓永,刘秀明.洼地沉积的137Cs法断代测定森林砍伐后的喀斯特小流域土壤流失量[J].中国科学(地球科学),2011,41(2):265-271.
    [16] 张信宝,贺秀斌,文安邦,等.川中丘陵区小流域泥沙来源137Cs和210Pb双同位素法研究[J].科学通报,2004,49(15):1537-1541.
    [17] 杨明义,徐龙江.黄土高原小流域泥沙来源的复合指纹识别法分析[J].水土保持学报,2010,24(2):30-34.
    [18] Walling D E, Owens P H, Leeks J L. Fingerprinting suspended sediment sources in the catchment of the River use, Yorkshire, UK[J].Hydrological Processes,1999,13:955-975.
    [19] Collins A L, Naden P S, Sear D A. Sediment targets for informing river catchment management: International experience and prospects[J].Hydrological Processes,2011,25(13):2112-2129.
    [20] 张信宝,王世杰,曹建华.西南喀斯特山地的土壤硅酸盐矿物物质平衡与土壤流失[J].地球与环境,2009,37(2):97-102.
    [21] 蒋忠诚,罗为群,邓艳,等.岩溶峰丛洼地水土漏失及防治研究[J].地球学报,2014,35(5):535-542.
    [22] Bai X Y, Zhang X B, Chen H. Using 137Cs fingerprint technique to estimate sediment deposition and erosion rates from Yongkangdepression in karst region of Southwest China[J].Land Degrad Dev,2010,21:1-6.
    [23] Díazasencio M, Corchoalvarado J A, Cartasaguila H, et al. 210Pb and 137Cs as tracers of recent sedimentary processes in two water reservoirs in Cuba[J].Journal of Environmental Radioactivity,2017,177:290-304.
    [24] 俱战省,严冬春,文安邦,等.塘库沉积的137Cs法断代测定三峡库区小流域产沙量[J].地球与环境,2018,46(1):76-81.
    [25] 杨明义,田均良,刘普灵.应用137Cs研究小流域泥沙来源[J].土壤侵蚀与水土保持学报,1999,5(3):49-53.
    [26] 俞劲炎,卢升高.土壤磁学[M].南昌:江西科学技术出版社,1990:52-62.
    [27] 卢升高.中国土壤磁性与环境[M].1版.北京:高等教育出版社,2003:48-56.
    [28] 周佩华,李银锄,黄义端,等.2000年中国水土流失趋势预测及其防治对策[J].中国科学院西北水土保持研究所集刊,1988(1):57-71.
    [29] 张平仓,唐克丽,郑粉丽,等.皇甫川流域泥沙来源及其数量分析[J].水土保持学报,1990,4(4):29-36.
    [30] Zhao G, Mu X, Han M, et al. Sediment yield and sources in dam-controlled watersheds on the northern Loess Plateau[J].Catena,2017,149:110-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700