用户名: 密码: 验证码:
正交实验法对平板型双介质阻挡放电等离子体助燃特性的影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Influence Factors of Parallel Plates Double-dielectric Barrier Discharge Plasma Assisted-combustion Characteristics in the Combustor by Using the Orthogonal Experimental Method
  • 作者:邓俊 ; 何立明 ; 刘兴建 ; 陈一
  • 英文作者:DENG Jun;HE Li-Ming;LIU Xing-Jian;CHEN Yi;Air Force Engineering University, Aeronautics Engineering College;
  • 关键词:等离子体 ; 燃烧室 ; 正交实验 ; 平板型 ; 双介质阻挡放电
  • 英文关键词:plasma;;combustor;;orthogonal experimental method;;parallel plate;;double-dielectric barrier discharge
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:空军工程大学航空工程学院;
  • 出版日期:2019-01-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金重点项目(No.51436008)
  • 语种:中文;
  • 页:GCRB201901032
  • 页数:10
  • CN:01
  • ISSN:11-2091/O4
  • 分类号:215-224
摘要
采用正交实验法研究了受多因素影响的燃烧室等离子体助燃特性,定量分析了燃烧室等离子体助燃特性的影响因素的作用机制,得到了改善助燃特性的最优组合方案。分析结果表明:等离子体助燃的研究中,选取了6个因素5个水平,通过正交实验法,实验次数由5~6减少至25;提高燃烧效率、降低CO排放量、改善出口温度分布和缩短湍流混合时间的最优组合方案分别为E_1F_2A_4D_2B_5C_5、E_1A_4B_5F_2C_5D_2、E_3A_2B_5D_5F_5C_2、E_3B_5A_2F_3C_1D_1;对于非平衡介质阻挡放电的等离子体助燃,放热量是影响燃烧效率、CO排放因子、出口温度分布系数和湍流混合时间的最显著因素,高频交流激励下温升效应是等离子体强化燃烧的最主要途径。研究结果可为等离子体助燃激励器的结构优化和参数控制,以及激励施加方式的选择提供依据。
        Orthogonal experimental method is used to analyze some factors that influence plasma assisted-combustion characteristic in combustor. The mechanism of plasma assisted-combustion in combustor is investigated quantitatively. Optimization schemes that improve plasma assistedcombustion characteristics are obtained. Analysis results indicate that 6 factors and 5 levels are selected in researches on plasma assisted-combustion and the number of experiment is reduced from 5~6 to 25; optimization schemes of improving combustion efficiency, decreasing CO emission, improve outlet temperature distribution and reducing turbulent mixing time are E_1 F_2 A_4D_2B_5C_5.E_1A_4B_5F_2C_5D_2、E_3A_2B_5D_5F_5C_2、E_3B_5A_2F_3C_1D_1; for plasma assisted-combustion of non-equilibrium dielectric barrier discharge, heat release is the most obvious factor that affects combustion efficiency, CO emission factor, outlet temperature distribution coefficient and turbulent mixing time and temperature rise effect is the most important pathway for plasma enhancement combustion. Investigation results can provide some basis for the parameter control and structure optimization of plasma assisted combustion actuators and the selection of applied actuation mode.
引文
[1]姜春阳,夏胜国,邹鑫,等.介质阻挡放电边缘电场对甲烷燃烧强化的影响[J].高电压技术,2009, 35(1):26-30JIANG Chunyang, XIA Shengguo, ZHOU Xin, et al. Effects of Edge Electric Field in Dielectric Barrier Discharges on Methane Combustion[J]. High Voltage Engineering,2009, 35(1):26-30
    [2]丁玉柱,夏胜国,王琼芳,等.介质阻挡放电对甲烷离解及燃烧火焰的影响[J].中国电机工程学报,2011,31(31):204-210DING Yuzhu, XIA Shengguo, WANG Qiongfang, et al.Effect of Dielectric Barrier Discharge on Methane Dissociation and Combustion[J]. Proceedings of the CSEE, 2011,31(31):26-30
    [3]邹鑫,夏胜国,姜春阳,等.甲烷燃烧强化实验中电压和频率对火焰的影响[J].高电压技术,2009, 35(1):31-35ZHOU Xin, XIA Shengguo, JIANG Chunyang, et al. Influence of Voltage and Frequency on Combustion Flame in Experimental Combustion Enhancement of Methane[J].High Voltage Engineering, 2009, 35(1):31-35
    [4] Sy S, Yongho K, Vincent F, et al. Flame Images Indicating Combustion Enhancement by Dielectric Barrier Discharges[J]. IEEE Transactions on Plasma Science, 2005,33(2):316-317
    [5] Kim W, Do H, Mungal M G, et al. Flame Stabilization Enhancement and Nox Production Using Ultra Short Repetitively Pulsed Plasma Discharges[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada:AIAA, 2006
    [6] Ombrello T, Won S H, Ju Y G, et al. Flame Propagation Enhancement by Plasma Excitation of Oxygen Part I:Effects of O_3[J].Combustion and Flame, 2010, 157(10):1906-1915
    [7] Ombrello T, Won S H, Ju Y G, et al. Flame Propagation Enhancement by Plasma Excitation of Oxygen Part II:Effects of O_2(alg)[J]. Combustion and Flame, 2010,157(10):1916-1928
    [8]张鹏,洪延姬,沈双晏,等.等离子体强化点火的动力学分析[J].高电压技术,2014, 40(7):2125-2132ZHANG Peng, HONG Yanji, SHEN Shuangyan, et al. Ki-netic Effects of Plasma on the Ignition Process[J]. High Voltage Engineering, 2014, 40(7):2125-2132
    [9]张鹏,洪延姬,沈双晏,等.等离子体中活性粒子分析及化学动力学机理[J].强激光与粒子束,2015, 27(3):279-283ZHANG Peng, HONG Yanji, SHEN Shuangyan, et al. Kinetic Effects of Plasma-Assisted Ignition and Active Particles Analysis[J]. High Power Laser and Particle Beams,2015, 27(3):279-283
    [10]马第,窦志国,洪延姬,等.活性组分对丙烷燃烧影响的数值研究[J].装备学院学报,2012, 23(6):128-131MA Di, DOU Zhiguo, HONG Yanji, et al. Effect Study of Active Components on Propane Combustion[J]. Journal of Academy of Equipment, 2012, 23(6):128-131
    [11] LIU Xingjian, HE Liming, YU Jinlu, et al. Experimental Investigation of Effects of Airflows on Plasma-Assisted Combustion Actuator Characteristics[J]. Chinese Physics B, 2015, 24(4):045101
    [12] Phelps A V, Pitchford L C. Anisotropic Scattering of Electrons by N2 and Its Effect on Electron Transport[J]. Physical Review A, 1985, 31(5):2932-2949
    [13] Ionin A A, Kochetov I V, Napartovich A P, et al. Physical and Engineering of Single Delta Oxygen Production in Low-Tempareture Plasma[J]. Journal of Physics D:Applied Physics, 2007, 40(2):25-61
    [14] Safa M, John H M. Cross Sections for Radicals from Electron Impact on Methane and Fluoroalkanes[J]. Journal of Chemical Physics, 1998, 109(2):432-438
    [15] Uddi M. Non-Equilibrium Kinetic Studies of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion[D]. Ohio:The Ohio State University, 2008
    [16] Yin Z Y, Montello A, Carter C D, et al. Measurements of Temperature and Hydroxyl Radical Generation/Decay in Lean Fuel-air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge[J]. Combustion and Flame, 2013,160(9):1594-1608
    [17] Bak M S, Cappelli M A. Simulations of NanosecondPulsed Dielectric Barrier Discharges in Atmospheric Pressure air[J]. Journal of Applied Physics, 2013, 113(11):113301
    [18] Uddi M, Jiang N B, Mintusov E, et al. Atomic Oxygen Measurements in Air and Air/Fuel Nanosecond-Pulse Discharges by Two Photon Laser Induced Fluorescence[J].Proceedings of Combustion Institute, 2009, 32:929-936
    [19] Serbin S, Mostipanenko A, Matveev I, et al. Improvement of the Gas Turbine Plasma Assisted Combustor Characteristics[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando:Florida, AIAA, 2011
    [20] Fluent Inc. Fluent 6.3 User's Guide[M]. Lebanon, NH:Fluent Inc, 2006:1-112
    [21] Sankaran R, Hawkes E R, Chen J H, et al. Structure of a Spatially Developing Turbulent Lean Methane/Air Bunsen Flame[J]. Proceedings of the Combustion Institute,2007, 31:1291-1298
    [22] ZHANG Hualei, HE Liming, YU Jinlu, et al. Investigation of Flame Structure in Plasma-Assisted Turbulent Premixed Methane-Air Flame[J]. Plasma Science and Technology. 2018, 20(2):5-11
    [23]穆海宝,喻琳,李平,等.CH4/02/He混合气体作大气压介质阻挡放电处理后其燃烧特性的改变[J].高电压技术,2014, 40(10):2980-2985MU Haibao, YU Lin, LI Ping, et al. Enhancement of the Premixed CH4/O2/He Flame Speed with Dielectric Barrier Discharge[J]. High Voltage Engineering, 2014, 40(10):2980-2985
    [24]杜宏亮.燃烧室等离子体助燃的机理及特性研究[D].西安:空军工程大学,2012DU Hongliang. Mechanism and Characteristic Investigation of Chamber Plasma Assisted Combustion[D]. Xi'an:Air Force Engineering University, 2012
    [25]朱益飞,吴云,崔巍,等.大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证[J].航空学报,2013, 34(9):2081-2091ZHU Yifei, WU Yun, CUI Wei, et al. Numerical Simulation and Experimental Validation of Pulsed Nanosecond Plasma Aerodynamic Actuation in Air under Atmospheric Pressure[J]. Acta Aeronautica ET Astronautica Sinica,2013, 34(9):2081-2091
    [26]朱益飞,贾敏,崔巍,等.大气压N2-02混合气纳秒脉冲表面介质阻挡放电建模仿真[J].高电压技术,2013, 39(7):1716-1723ZHU Yifei, JIA Min, CUI Wei, et al. Modeling of Nanosecond Pulsed Surface Dielectric Barrier Discharge of N2-O2Mixture at Atmosphere Pressure[J]. High Voltage Engineering, 2013, 39(7):1716-1723
    [27] Poggie J, Adamovich I, Bisek N, et al. Numerical Simulation of Nanosecond-Pulse Electrical Discharges[J].Plasma Sources Science and Technology, 2013, 22(1):015001
    [28] Takana H, Tanaka Y, Nishiyama H. Computational Simulation of Reactive Species Production by Methane-Air DBD at High Pressure and High Temperature[J]. A Letter Journal of Exploring the Frontiers of Physics(EPL),2012, 97(1):25001
    [29] Bibrzycki J, Poinsot T. Reduced Chemical Kinetic Mechanisms for Methane Combustion in O2/N2 and O2/CO2Atmosphere[R]. France:CERFACS, 2010
    [30] Starikovskaia S M. Plasma Assisted Ignition and Combustion[J]. Journal of Physics D:Applied Physics, 2006,39(16):265-299
    [31]付镇柏,林宇震,张弛,等.中心分级燃烧室进场工况燃油分级方式试验研究[J].推进技术,2014, 35(1):77-86FU Zhenbai, LIN Yuzhen, ZHANG Chi, et al. Experimental Investigation on Fuel-Staging Mode of InternallyStaged Combustor under Approach Condition[J]. Journal of Propulsion technology, 2014, 35(1):77-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700