用户名: 密码: 验证码:
闽江河口湿地沉积物氮矿化对盐度响应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Salinity effects on the nitrogen mineralization in different wetland sediments of the Min River Estuary
  • 作者:谢蓉蓉 ; 李家兵 ; 张党玉 ; 黄倩倩 ; 丁晓燕 ; 吴春山
  • 英文作者:XIE Rong-rong;LI Jia-bing;ZHANG Dang-yu;HUANG Qian-qian;DING Xiao-yan;WU Chun-shan;College of Environmental Science and Engineering, Fujian Normal University;Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University;College of Geographical Sciences, Fujian Normal University;
  • 关键词:矿化作用 ; 盐度 ; 沉积物 ; 短叶茳芏 ; 闽江河口湿地
  • 英文关键词:mineralization;;salinity;;sediment;;Cyperus Malaccensis;;Min River Estuary wetland
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:福建师范大学环境科学与工程学院;福建师范大学福建省污染控制与资源循环利用重点实验室;福建师范大学地理科学学院;
  • 出版日期:2017-06-20
  • 出版单位:中国环境科学
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(51541906);; 福建省公益类科研院所专项(2016R1032-1);; 福建省科技厅重点项目(2015R0099);; 福建省自然科学基金项目(2016J05096)
  • 语种:中文;
  • 页:ZGHJ201706037
  • 页数:7
  • CN:06
  • ISSN:11-2201/X
  • 分类号:250-256
摘要
2015年7月采集闽江鳝鱼滩微咸水湿地和道庆洲淡水湿地两种类型湿地沉积物,采用淹水密闭培养方法,研究不同湿地沉积物氮矿化过程及盐度影响.结果表明:相同矿化培养条件下,微咸水湿地矿化持续时间长,矿化能力大,鳝鱼滩沉积物无机氮(NH_4~+-N和NO_3~--N)总量70d后达到矿化稳定浓度(499.8±2.1)mg/kg,道庆洲35d后达到稳定浓度(202.9±4.1)mg/kg,不同盐度条件对矿化过程无机氮浓度基本无影响.两种湿地类型的氮矿化速率随培养时间均呈现先增加后减少,鳝鱼滩沉积物0‰,5‰和10‰盐度条件对应最高矿化速率为(2.54±0.56)mg/(kg·d),(4.96±0.22)mg/(kg·d)和(3.88±0.25)mg/(kg·d),道庆洲同条件矿化速率(1.40±0.01)mg/(kg·d),(2.48±0.15)mg/(kg·d),(1.85±0.11)mg/(kg·d).表明一定范围内的盐度可促进氮矿化速率,但是高盐度产生抑制作用.
        To reveal the influence of the salt water intrusion caused by the greenhouse effect on the sediment nitrogen mineralization in the estuary wetland, Cyperus malaccensis marsh sediment samples in the Shanyutan brackish water wetland and the Daoqingzhou freshwater wetland were collected in July, 2015. Using the submerged incubation method, the soil mineralization in different kinds of wetland and salinity effects were examined in the Min River estuary. The results suggested that the sediments in brackish water wetland had a longer nitrogen mineralization time as well as a stronger mineralization capacity under the same incubation conditions. The total inorganic nitrogen(includes ammonia nitrogen and nitrate nitrogen) reached a stable concentration of(499.8±2.1) mg/kg after 70 d for Shanyutan brackish wetland sediment, while the mineralization reached equilibrium in only 30 d with a lower stable concentration of(202.9±4.1) mg/kg for Daoqingzhou freshwater wetland sediment. Additionally, salinity condition showed little effect on concentration of the total inorganic nitrogen during the mineralization process. The rate of nitrogen mineralization for both brackish and freshwater wetland sediments firstly increased and then decreased as the increase of incubation time. In Shanyutan brackish water wetland, the rate of nitrogen mineralization were(2.54±0.56) mg/(kg·d),(4.96±0.22) mg/(kg·d) and(3.88±0.25) mg/(kg·d) under salinity of 0‰, 5‰ and 10‰, respectively. While in Daoqingzhou wetland, the corresponding values were(1.40±0.01) mg/(kg·d),(2.48±0.15) mg/(kg·d) and(1.85±0.11) mg/(kg·d), respectively. The observation revealed that moderate salinity conditions can promote the nitrogen mineralization, while high salinity conditions could induced an inhibitory effect.
引文
[1]侯立军.长江口潮滩湿地生源要素氮的生物地球化学过程研究[D].上海:华东师范大学,2006.
    [2]Lang M,Cai Z C,Mary B,et al.Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J].Plant and Soil,2010,334(1/2):377-389.
    [3]Maltais-Landry G,Maranger R,Brisson J,et al.Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J].Water Research,2009,43(2):535-545.
    [4]Bedard-Hawlgh A,Matson A L,Pennock D J.Land use effects on gross nitrogen mineralization,nitrification and N2O emissions in ephemeral wetlands[J].Soil Biology and Biochemistry,2006,38(12):3398-3406.
    [5]Yu S,Ehrenfeld J G.The effects of changes in soil moisture on nitrogen cycling in acid wetland types of the New Jersey Pinelands(USA)[J].Soil Biology&Biochemistry,2009,41(12):2394-2405.
    [6]Bohlen P J.Gathumbi S M.Nitrogen cycling in seasonal wetlands in subtropical cattle pastures[J].Soil Science Society of America Journal,2007,71(3):1058-1065.
    [7]Noe G B.Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique[J].Soil Science Society of America Journal,2011,75(2):760-770.
    [8]Sun Z G,Liu J S.Soil nitrogen net mineralization and nitrification in typical Calamagrostis angustifolia wetlands in Sanjiang Plain[J].Chinese Journal of Applied Ecology,2007,18(8):1771-1777.
    [9]Zhao Q Q.Study of nitrogen mineralization dynamics in soil of Taihu Lake zone[D].Nanjing:Nanjing Forest University,2011.
    [10]Gao J Q,Ouyang H,Zhang F,et al.The response of soil nitrogen mineralization to soil temperature and soil moisture in Zoige Alpine Wetland[J].Wetland Science,2008,6(2):229-234.
    [11]铁佩,左平,何祯祥.海滨系统生态学[M].北京:化学工业出版社,2004:166-169.
    [12]Neubauer S C.Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology[J].Estuaries and Coasts,2013,36(3):491-507.
    [13]肖颖.辽河口滨海湿地土壤有机碳矿化及其与盐分的关系[J].生态学杂志,2015,34(10):2792-2798.
    [14]Krauss K W,Whitbeck J L.Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River,Georgia(USA)[J].Wetlands,2011,32(1):73-81.
    [15]刘剑秋,曾从盛,陈宁.闽江河口湿地研究[M].北京:科学出版社,2006:70-76.
    [16]潘婷,王维奇,曾从盛.潮汐湿地土壤碳矿化及其对电子受体响应研究进展[J].湿地科学与管理,2012,8(1):51-55.
    [17]徐万里,刘骅,张云舒.新疆盐渍化土壤氮素矿化和硝化作用特征[J].西北农林科技大学学报(自然科学版),2007,35(11):141-145.
    [18]Meclung G,Frankenberger W T J.Nitrogen mineralization rates in saline vs.salt-amended soils[J].Plant and Soil,1987,104(1):13-21.
    [19]Pathak H,Rao D L N.Carbon and nitrogen mineralization from added organic matter in saline and alkali soils[J].Soil Biology&Biochemistry,1998,30(6):695-702.
    [20]Nelson P N,Ladd J N,Oades J M.Decomposition of14C-labelled plant material in a salt-affected soil[J].Soil Biology&Biochemistry,1996,28(4/5):433-441.
    [21]Craft C.Freshwater input structures soil properties,vertical accretion,and nutrient accumulation of Georgia and U.S tidal marshes[J].Limnology&Oceanography,2007,52(3):1220-1230.
    [22]Marinari S,Mancinelli R,Campiglia E,et al.Chemical and biological indicators of soil quality in organic and conventional farming systems in central Italy[J].Ecological Indicators,2006,6(4):701-711.
    [23]Setia R,Marschner P,Baldock J,et al.Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate?[J].Biology and Fertility of Soils,2010,46(8):781-792.
    [24]周旺明,秦胜金,刘景双,等.沼泽湿地土壤氮矿化对温度变化及冻融的响应[J].农业环境科学学报,2011,30(4):806-811.
    [25]Groffman P M,Gold A J,Addy K.Nitrous oxide production in riparian zones and its importance to national emission inventories[J].Chemosphere-Global Change Science,2000,2(3/4):291-299.
    [26]牟晓杰,孙志高,刘兴土.黄河口典型潮滩湿地土壤净氮矿化与硝化作用[J].中国环境科学,2015,35(5):1466-1473.
    [27]Curtin D,Campbell C A,Jalil A.Effects of acidity on mineralization:p H-dependence of organic matter mineralization in weakly acidic soils[J].Soil Biology&Biochemistry,1998,30(1):57-64.
    [28]田冬,高明,徐畅.土壤水分和氮添加对3种质地紫色土氮矿化及土壤p H的影响[J].水土保持学报,2016,30(1):255-261.
    [29]李家兵,张党玉,吴春山,等.不同p H对闽江河口湿地沉积物氮素转换关键过程的影响[J].水土保持学报,2017,31(1):272-278.
    [30]孙志高,刘景双.三江平原典型小叶章湿地土壤氮素净矿化与硝化作用[J].应用生态学报,2007,18(8):1771-1777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700