用户名: 密码: 验证码:
长江口滩涂电杆礁生态修复区栖息地含水量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of ecological restoration of electric pole reef on habitat environment in the Yangtze River Estuary
  • 作者:许自力 ; 刘亮 ; 袁林 ; 吴惠仙 ; 薛俊增
  • 英文作者:XU Zili;LIU Liang;YUAN Lin;WU Huixian;XUE Junzeng;College of Marine Ecology and Environment,Shanghai Ocean University;Centre for Research on the Ecological Security of Ports and Shipping;
  • 关键词:长江口 ; 滩涂围垦 ; 电杆礁 ; 生态修复 ; 栖息地 ; 含水量
  • 英文关键词:Yangtze River Estuary;;tidal flat reclamation;;electric pole reef;;ecological restoration;;habitat;;water content
  • 中文刊名:SSDB
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学海洋生态与环境学院;上海海洋大学港航生态安全研究中心;
  • 出版日期:2018-12-24 12:49
  • 出版单位:上海海洋大学学报
  • 年:2019
  • 期:v.28
  • 基金:上海市海洋局项目(沪海科2017-06);; 海洋公益性行业科研专项(2010418013);; 上海市科委科研计划项目(17DZ1202905)
  • 语种:中文;
  • 页:SSDB201902014
  • 页数:7
  • CN:02
  • ISSN:31-2024/S
  • 分类号:126-132
摘要
近年来长江口浦东机场外进行了滩涂围垦,根据浦东机场围垦区外侧滩涂的特殊性,选用电杆礁生态修复技术进行滩涂生态修复。结果显示在电杆礁修复实施后,其基部可形成小水体,小水体体积与电杆礁地上高度具有相关性(P=0. 035),且修复区内电杆礁基部沉积物的含水量为45. 62%。通过对修复区内外沉积土样含水量的比较分析,显示修复时间影响沉积土样的含水量,修复时间长(180 d)的区域0 m处的含水量(48. 41%)高于修复时间短(90 d)的区域0 m处的含水量(40. 73%);位于修复区近岸侧的含水量(50. 56%)高于远岸侧含水量(38. 22%);垂直于海岸线向修复区外延伸的样点(纵向样点)的含水量(48. 24%)高于平行海岸线向修复区外延伸的样点(横向样点)的含水量(37. 29%)。综上所述,电杆礁生态修复技术能够提升修复区滩涂栖息地含水量。
        In recent years,tidal flat reclamation has been carried out outside Pudong airport of Yangtze River Estuary. Considering the particularity of pudong airport location,it is planned to use method of pole reef ecological restoration to restore the tidal flat. The results showed that small water bodies could be formed at the base of pole reef after the implementation of the installation. The length of the overground of pole reef was correlated with the volume of water body( P = 0. 035),the water content of the sedimentary soil sample was about 45. 62%. Through the comparative analysis of the water content of the sedimentary soil samples inside and outside the restoration area in different ways,it is shown that the restoration time affects the water content of the sedimentary soil samples. The water content of the area with a long restoration time of 0 m( 48. 41%),which is higher than that of the area with a short restoration time of 0 m,which is 40. 73%. The water content of the sedimentary soil sample was also affected by the spatial distribution. The water content of the nearshore side of the restoration area was 50. 56%,much higher than that of the far shore side,which was 38. 22%.The water content of surrounding habitats in the restoration area is affected by the restoration area,which is shown as the water content of the vertical shoreline sample( longitudinal sample) extending outside the restoration area is higher than that of the parallel shoreline sample( transverse sample) extending outside the restoration area. Through the comparison and analysis of the water content of the sedimentary soil samples inside outside the restoration area,the above results show that the electric pole reef ecological restoration technology can have a certain positive impact on the beach habitat,surrounding sedimentary soil and its ecological environment of water content.
引文
[1]刘慧,孔光耀.生态交错带及其边缘效应的研究进展[J].中学生物教学,2006(11):4-5.LIU H,KONG G Y.Advances in the study of ecotone and its marginal effects[J].Middle School Biology Teaching,2006(11):4-5.
    [2]小田弘雄,蒲廷芬.与海的威胁进行斗争-介绍荷兰的围垦工程[J].水利水运科技情报,1975(6):86-93.HIROSHI O D A,PU T F.Fighting the threat of the sea:introduction to the Dutch Reclamation Project[J].Information on Water Transport Technology,1975(6):86-93.
    [3]李荣军.荷兰围海造地的启示[J].海洋开发与管理,2006,23(3):31-34.LI R J.Illumination getting from encircling the sea to make land in Netherlands[J].Ocean Development and Management,2006,23(3):31-34.
    [4]陶鼎来.荷兰、韩国围海造田成就斐然[J].世界农业,1996(10):46-48.TAO D L.The Netherlands,South Korea have made great achievements in reclaiming land from the sea[J].World Agriculture,1996(10):46-48.
    [5]李明霞.厦门九成原生红树林遭破坏[J].园林科技,2008(1):50.LI M X.90%of the original mangroves in Xiamen were destroyed[J].Garden Science and Technology,2008(1):50.
    [6]王志勇,赵庆良,邓岳,等.围海造陆形成后对生态环境和渔业资源的影响---以天津临港工业区滩涂开发一期工程为例[J].城市环境与城市生态,2004,17(6):37-39.WANG Z Y,ZHAO Q L,DENG Y,et al.Effect of reclamation project to ecological environment and fishery resource---taking the exploit seabeach first project of Tianjin industrial abuting on the port[J].Urban Environment&Urban Ecology,2004,17(6):37-39.
    [7]张长宽,陈欣迪.海岸带滩涂资源的开发利用与保护研究进展[J].河海大学学报(自然科学版),2016,44(1):25-33.ZHANG C K,CHEN X D.Advances in development,utilization,and protection of coastal tidal flats[J].Journal of Hohai University(Natural Sciences),2016,44(1):25-33.
    [8]夏立群,张红莲,简纪常,等.植物修复技术在近海污染治理中的研究与应用[J].水资源保护,2005,21(1):32-35.XIA L Q,ZHANG H L,JIAN J C,et al.Study on the application of phytoremediation technology to the treatment of wastewater in the coastal sea[J].Water Resources Protection,2005,21(1):32-35.
    [9]林黎,崔军,陈学萍,等.滩涂围垦和土地利用对土壤微生物群落的影响[J].生态学报,2014,34(4):899-906.LIN L,CUI J,CHEN X P,et al.Effects of reclamation on tidal fiat and land use on soil microbial community[J].Acta Ecologica Sinica,2014,34(4):899-906.
    [10]周春煦.九段沙沙洲演变及其与水沙变化的响应关系[J].水电能源科学,2017,35(12):78-81.ZHOU C X.Response relationship of evolution of Jiuduansha island to water and sediment variation[J].Water Resources and Power,2017,35(12):78-81.
    [11]陈吉余,李道季,金文华.浦东国际机场东移与九段沙生态工程[J].中国工程科学,2001,3(4):1-8.CHEN J Y,LI D J,JIN W H.Eco-engineering of Jiuduansha island caused by Pudong international airport construction[J].Engineering Science,2001,3(4):1-8.
    [12]张思琦.基于河流生态修复理念的城市滨水空间景观设计研究[D].北京:北京林业大学,2016.ZHANG S Q.The landscape design of urban waterfront areas based on the concept of river restoration[D].Beijing:Beijing Forestry University,2016.
    [13]王昱.区域生态补偿的基础理论与实践问题研究[D].长春:东北师范大学,2009.WANG Y.The exploring in fundamental theories and practical issues of regional ecological compensation[D].Changchun:Northeast Normal University,2009.
    [14]毛玉梅.烟气脱硫石膏改良围垦滩涂盐碱土研究[D].上海:华东师范大学,2016.MAO Y M.Flue gas desulfurization gypsum improving salinesodic soil in tidal flats[D].Shanghai:East China Normal University,2016.
    [15]陈彩成.滩涂沉积物石油污染高级氧化修复及健康风险后评估技术研究[D].上海:华东理工大学,2016.CHEN C C.Advanced oxidation remediation and post health risk assessment of petroleum-contaminated sediment in the tidal flats[D].Shanghai:East China University of Science and Technology,2016.
    [16]纪录,张晖.原位化学氧化法在土壤和地下水修复中的研究进展[J].环境污染治理技术与设备,2003,4(6):37-42.JI L,ZHANG H.The progress in soil and groundwater remediation by in situ chemical oxidation[J].Techniques and Equipment for Environmental Pollution Control,2003,4(6):37-42.
    [17]刘针铃.Eh交替变化与海水淋洗对围垦滩涂土壤重金属污染的联合修复[D].广州:暨南大学,2014.LIU Z L.Remediation on reclaimed tidal soil polluted with heavy metals by sea-water leaching combined Eh alternating change[D].Guangzhou:Ji'nan University,2014.
    [18]符小明.人工鱼礁修复海洋生态系统的效果评价---以海州湾为例[D].上海:上海海洋大学,2016.FU X M.Evaluate the effectiveness of marine ecological rehabilitation using artificial reef-a case study of Haizhou bay[D].Shanghai:Shanghai Ocean University,2016.
    [19]兰孝政.圆台型人工鱼礁流场效应的数值模拟研究[D].青岛:中国海洋大学,2015.LAN X Z.Numerical simulations of the flow field around artificial reefs with truncated-cone shape[D].Qingdao:Ocean University of China,2015.
    [20]赵峰,黄孝锋,张涛,等.利用人工飘浮湿地恢复长江口生物多样性研究初探[J].渔业信息与战略,2015,30(4):288-292.ZHAO F,HUANG X F,ZHANG T,et al.Preliminary study on artificial floating wetland for biodiversity restoration in the Yangtze Estuary[J].Fishery Information&Strategy,2015,30(4):288-292.
    [21]NAKAMURA K,KADOKURA N,MUNAKTA Y,et al.Restorarion of lakeshore vegetation by artificial floating island[J].Environmental Systems Research,1999,27:305-314.
    [22]王中玉.渐变流植被河道水动力学机制研究[D].北京:华北电力大学(北京),2016.WANG Z Y.Research on the hydraulic mechanisms of gradually varied flow in vegetated channels[D].Beijing:North China Electric Power University(Beijing),2016.
    [23]于定勇,赵建豪,黄东燕,等.不同倒角半径柱体绕流数值模拟及水动力特性分析[J].海洋工程,2018,36(5):1-11.YU D Y,ZHAO J H,HUANG D Y,et al.Numerical simulation of flow past a cylinder with different rounded radius and analysis of hydrodynamic characteristics[J].The Ocean Engineering,2018,36(5):1-11.
    [24]端木玉,万德成.不同长细比圆柱绕流的大涡模拟[J].水动力学研究与进展,2016,31A(3):295-302.DUAN M Y,WAN D C.Large eddy simulation of flow around the cylinders with different aspects[J].Chinese Journal of Hydrodynamics,2016,31A(3):295-302.
    [25]刘建康.高级水生生物学[M].北京:科学出版社,1999.LIU J K.Advanced aquatic biology[M].Beijing:Science Press,1999.
    [26]段学花,王兆印,田世民.河床底质对大型底栖动物多样性影响的野外试验[J].清华大学学报(自然科学版),2007,47(9):1553-1556.DUAN X H,WANG Z Y,TIAN S M.Field experiment on the effect of streambed substrate on macroinvertebrate diversity[J].Journal of Tsinghua University(Science and Technology),2007,47(9):1553-1556.
    [27]宋玉芝,张亚冬,郑建伟,等.淡水湖泊附着藻类生态学研究进展[J].生态学杂志,2016,35(2):534-541.SONG Y Z,ZHANG Y D,ZHENG J W,et al.Periphytic algae ecology in freshwater lake:a review[J].Chinese Journal of Ecology,2016,35(2):534-541.
    [28]DODDS W K.The role of periphyton in phosphorus retention in shallow freshwater aquatic systems[J].Journal of Phycology,2003,39(5):840-849.
    [29]秦伯强,宋玉芝,高光.附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用[J].中国科学C辑生命科学,2006,36(3):283-288.QIN B Q,SONG Y Z,GAO G.The role of periphytes in the shift between macrophyte and phytoplankton dominated systems in a shallow,eutrophic lake(Lake Taihu,China)[J].Science in China Series C:Life Sciences,2006,36(3):283-288.
    [30]MCARTHUR A A.Reviewed work:government policy and industrial change by david gibb[J].Transactions of the Institute of British Geographers,1990,15(1):123-125.
    [31]TANG H W,TIAN Z J,YAN J,et al.Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation[J].Advances in Water Resources,2014,69:134-145.
    [32]STANG C,WIECZOREK M V,NOSS C,et al.Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms[J].Chemosphere,2014,107:13-22.
    [33]NEARY V S,CONSTANTINESCU S G,BENNETT S J,et al.Effects of vegetation on turbulence,sediment transport,and stream morphology[J].Journal of Hydraulic Engineering,2012,138(9):765-776.
    [34]AFZALIMEHR H,DEY S.Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions[J].International Journal of Sediment Research,2009,24(2):236-246.
    [35]DEVI T B,DAGA R,MAHTO S K,et al.Drag and turbulent characteristics of mobile bed channel with mixed vegetation densities under downward seepage[J].Journal of Fluids Engineering,2016,138(7):071104.
    [36]KOUWEN N,LI R M.Biomechanics of vegetative channel linings[J].Journal of the Hydraulics Division,1980,106(6):1085-1103.
    [37]GREEN J C.Modelling flow resistance in vegetated streams:review and development of new theory[J].Hydrological Processes,2005,19(6):1245-1259.
    [38]CHEN Y C,KAO S P,LIN J Y,et al.Retardance coefficient of vegetated channels estimated by the Froude number[J].Ecological Engineering,2009,35(7):1027-1035.
    [39]LEE J K,ROIG L C,JENTER H L,et al.Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades[J].Ecological Engineering,2004,22(4/5):237-248.
    [40]ZHANG H Y,WANG Z Y,XU W G,et al.Effects of rigid unsubmerged vegetation on flow field structure and turbulent kinetic energy of gradually varied flow[J].River Research and Applications,2015,31(9):1166-1175.
    [41]吴建.近海人工凸体保滩促淤的试验研究[D].青岛:中国海洋大学,2010.WU J.Experimental study on the artificial convex structure for beasch protection and siltation promotion[D].Qingdao:Ocean University of China,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700