用户名: 密码: 验证码:
基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis
  • 作者:刘成 ; 刘晓雨 ; 张旭辉 ; 李恋卿 ; 潘根兴
  • 英文作者:LIU Cheng;LIU Xiao-yu;ZHANG Xu-hui;LI Lian-qing;PAN Gen-xing;Institute of Resources, Ecological and Environment of Agricultural, Nanjing Agricultural University;
  • 关键词:生物质炭 ; 整合分析 ; 作物产量 ; 温室气体 ; 田间试验
  • 英文关键词:biochar;;meta-analysis;;crop yield;;greenhouse gas;;field experiment
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:南京农业大学农业资源与生态环境研究所;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.283
  • 基金:国家科技支撑计划项目(2015BAC02B01);; 国家自然科学基金项目(41501310,41471193);; 联合国生物质炭与土壤可持续管理项目(B4SS)~~
  • 语种:中文;
  • 页:NHBH201903025
  • 页数:11
  • CN:03
  • ISSN:12-1347/S
  • 分类号:218-228
摘要
通过搜集公开发表的文献资料,运用整合分析方法(Meta-analysis)研究生物质炭施用对我国农作物产量和土壤固碳减排潜力的影响。结果表明,生物质炭施用显著提高了作物产量,平均增产幅度为15.1%,其中旱作作物平均增产16.4%,水稻增产10.4%。试验土壤和生物质炭材料本身的理化特性与田间管理方式均会影响生物质炭施用下作物的增产幅度。土壤酸碱度和质地是影响增产幅度的重要因素:强酸性土壤中施用生物质炭作物增产幅度显著高于中性和碱性土壤;黏土和砂土中施用生物质炭作物增产幅度显著高于壤土。生物质炭生产过程中的炭化温度对作物产量有重要影响,当炭化温度高于550℃时,作物增产不显著。生物质炭施用显著降低了农田土壤氧化亚氮(N_2O)排放量和稻田甲烷(CH4)排放量,平均降低幅度分别为13.6%和15.2%。土壤酸碱度和质地显著影响N_2O减排幅度;生物质炭在中性和碱性土壤中的减排效果显著高于酸性土壤,而在强酸性土壤中N_2O减排效果不显著;不同质地土壤中N_2O的减排效果表现为壤土>砂土>黏土,壤土减排量达33.9%。氮肥施用量高于150 kg·hm-2时,N_2O减排效果显著。稻田土壤施用生物质炭N_2O减排效果优于旱地。土壤质地和酸碱度显著影响稻田CH4排放对生物质炭输入的响应,强酸性或砂性土壤中施用生物质炭CH4减排效果明显,其减排幅度分别为46.1%和25.9%。我国农田中施用生物质炭,有利于达到增产和固碳减排的效果。今后生物质炭的农田施用应优先选择施用到酸性、黏性或砂性等肥力较差的土壤中,优先选择旱作农田;生物质炭制备时应将炭化温度控制在550℃以下。
        In this study, a meta-analysis was conducted to investigate the effect of biochar amendment on crop yield, soil carbon sequestra-tion and greenhouse gas mitigation potential. The dataset was derived from field studies conducted in mainland China. The papers werepublished in either Chinese or English. This study showed that biochar soil amendment significantly increased crop yield by increased cropyield by 15.1% on average, whereas rice yield was increased by 10.4% and the grain yield of dry land crops was increased by an average of16.4%. The changes in grain yield following biochar amendment were influenced by soil and biochar properties as well as soil managementpractices. With regards to experimental soils acidity and texture were important factors influencing the response of crop yield to biocharamendment. Substantially greater yield increases were observed in soil with very low pH and clayey and sandy texture. In addition to soilproperties, biochar properties also influenced the response of crop yield to biochar amendment. No yield increases were observed when agri-cultural soils were amended with biochar produced at a high temperature(>550 ℃). Biochar amendment decreased nitrous oxide(N_2O)emission by 13.6% in dry crop land and decreased methane(CH4)emission from paddy soil by 15.2%. Soil acidity and texture were foundto be important factors that regulate the response of N_2O emission to biochar amendment. In strongly acid soils, the addition of biochar hadno effect on N_2O emission, whereas in neutral or alkaline soils, biochar significantly decreased N_2O emission. In terms of soil texture, the di-minishing effects of biochar were in the order of loam > sand > clay. In loamy soils, biochar amendment decreased N_2O emission by 33.9%.Nitrous oxide emission decreased significantly in soils amended with biochar under a nitrogen fertilizer application rate higher than 150 kg·hm-2. In rice paddies, biochar amendment decreased N_2O emission by 24.4%, which was significantly higher than the value in dry croplandsoils. Soil texture and pH significantly affected the response of CH4 emission to biochar amendment. In strongly acidic or sandy soils, bio-char amendment markedly decreased the emission of CH4. In soils with a sandy texture, biochar decreased CH4 emission by 25.9%. In con-clusion, our study shows that biochar soil amendment can increase crop yield and decrease greenhouse gas emissions in China ′s croplands.In the future, we suggest that it will be preferable to apply biochar to soils with lower fertility, such as acidic, clayey, or sandy soils, and todry crop land rather than paddy soils. Furthermore, biochar produced at a pyrolyzing temperature lower than 550 ℃ would be more suitablefor the amendment of agricultural soils.
引文
[1]潘根兴,卞荣军,程琨.从废弃物处理到生物质制造业:基于热裂解的生物质科技与工程[J].科技导报, 2017, 35(23):82-93.PAN Gen-xing, BIAN Rong-jun, CHENG Kun. From biowaste treatment to novel bio-material manufacturing:Biomaterial science and technology based on biomass pyrolysis[J]. Science&Technology Review, 2017, 35(23):82-93.
    [2] Glaser B, Balashov E, Haumaier L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000, 31(7):669-678.
    [3] Marrise E. Putting the carbon back:Black is the new green[J]. Nature,2006, 442(7103):624-626.
    [4] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems:A review[J]. Mitigation and Adaption Strategies for Global Change, 2006, 11:395–419.
    [5] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
    [6] Zhang A F, Liu Y M, Pan G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil,2012, 351(1/2), 263-275.
    [7] Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis[J]. Glob Chang Biol Bioenergy, 2013, 5(2):202–214.
    [8] Liu X Y, Zhang A F, Ji C Y, et al. Biochar′s effect on crop productivity and the dependence on experimental conditions:A meta-analysis of literature data[J]. Plant and Soil, 2013, 377(1/2):583-594.
    [9]肖婧,徐虎,蔡岸冬,等.生物质炭特性及施用管理措施对作物产量影响的整合分析[J].中国农业科学, 2017, 50(10):1827-1837.XIAO Jing, XU Hu, CAI An-dong, et al. The characteristics of biochar and the meta-analysis of the effects of application management measures on crop yield[J]. Scientia Agricultural Sinica, 2017, 50(10):1827-1837.
    [10] Cayuela M L, Van Zwieten L, Singh B P, et al. Biochar′s role in mitigating soil nitrous oxide emissions:A review andmeta-analysis[J]. Agriculture, Ecosystems and Environment, 2014, 191:5-16.
    [11] He Y H, Zhou X H, Jiang L L, et al. Effects of biochar application on soil greenhouse gas fluxes:A meta-analysis[J]. GCB Bioenergy, 2017,9:743–755.
    [12]罗晓琪,冯浩,刘晶晶,等.生物质炭施用下中国农田土壤N2O排放的Meta分析[J].中国生态农业学报, 2017, 25(9):1254-1265.LUO Xiao-qi, FENG Hao, LIU Jing-jing, et al. Meta analysis of N2O emission in Chinese farmland under biochar[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9):1254-1256.
    [13]赵红,孙滨峰,逯飞,等. Meta分析生物质炭对中国主粮作物痕量温室气体排放的影响[J].农业工程学报, 2017, 33(19):10-16.ZHAO Hong, SUN Bin-feng, LU Fei, et al, Meta analysis on impacts of biochar on trace greenhouse gases emissions from staple crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19):10-16.
    [14]农业部新闻办公室.我国主要农作物秸秆综合利用率超过80%.[DB/QL].[2016-05-26]http://www. moa. gov. cn/zwllm/zwdt/201605/t20160526_5151375. htm.Department of Agriculture Information Office. The comprehensive utilization rate of straw is more than 80%.[DB/QL].[2016-05-26]. http://www. moa. gov. cn/zwllm/zwdt/201605/t20160526_5151375. htm.
    [15]潘根兴,张阿凤,邹建文,等.农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J].生态与农村环境学报, 2010, 26(4):394-400.PAN Geng-xing, ZHANG A-feng, ZOU Jian-wen, et al. Biochar from agro-byproducts used as amendment to croplands:An option for low carbon agriculture[J]. Journal of Ecology and Rural Environment,2010, 26(4):394-400.
    [16]农业部办公厅.关于推介发布秸秆农用十大模式的通知[DB/QL].[2017-04-28].http://www. moa. gov. cn/govpublic/KJJYS/201705/t20170503_5593248. htm.General Office of the Ministry of Agriculture. Notice on the promotion and release of ten models of straw farming[DB/QL].[2017-04-28].http://www. moa. gov. cn/govpublic/KJJYS/201705/t20170503_5593248. htm.
    [17] Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity usingmeta-analysis[J].Agric Ecosyst Environ,2011,144(1):175-187.
    [18] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80, 1150-1156.
    [19] Rosenberg M S, Adams D C, Gurevitch J. MetaWin:Statistical software for meta-analysis[M]. Version 2. 0. Sunderland:Sinauer, 2000.
    [20] Morgan P B, Ainsworth E A, Long S P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield[J].Plant Cell and Environment, 2003, 26(8):1317-1328.
    [21] Curtis P S, Wang X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3):299-313.
    [22] Ainsworth E A, Davey P A, Bernacchi C J, et al. A meta-analysis of elevated[CO2] effects on soybean(Glycine max)physiology, growth and yield[J]. Global Change Biology, 2002, 8(8):695-709.
    [23]郑凤英,彭少麟.植物生理生态指标对大气CO2浓度倍增响应的整合分析[J].植物学报, 2001, 43(11):1101-1109.ZHENG Feng-ying, PENG Shao-lin. Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations[J]. Acta Botanica Sinica, 2001, 43(11):1101-1109.
    [24] Yao F X, Arbestain M C, Virgel S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor[J]. Chemosphere, 2010, 80(7):724-732.
    [25] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J]. Soil Use Management, 2011, 27(1):110–115.
    [26] Yuan J H, Xu R K. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China[J]. Soil Research, 2012, 50(7):570–578.
    [27]应介官,林庆毅,张梦阳,等.生物炭对铝富集酸性土壤的毒性缓解效应及潜在机制[J].中国农业科学, 2016, 49(23):4576-4583.YING Jie-guan, LIN Qing-yi, ZHANG Meng-yang, et al. Mitigative effect of biochar on aluminum toxicity of acid soil and the potential mechanism[J]. Scientia Agricultura Sinica, 2016, 49(23):4576-4583.
    [28]付琳琳.生物质炭施用下稻田土壤有机组分、腐殖质组分及团聚体特征研究[D].南京:南京农业大学, 2013.FU Lin-lin. Study on characteristics of soil organic components, humus components and aggregates in paddy soil with biochar[D]. Nanjing:Nanjing Agricultural University, 2013.
    [29]吴崇书,邱志腾,章明奎.施用生物质炭对不同类型土壤物理性状的影响[J].浙江农业科学, 2014(10):1617-1619, 1623.WU Chong-shu, QIU Zhi-teng, ZHANG Ming-kui. Effects of biochar on physical properties of different types of soil[J]. Journal of Zhejiang Agricultural Sciences, 2014(10):1617-1619, 1623.
    [30] Alexis M, Rasse D, Rumpel C, et al. Fire impact on C and N losses and charcoal production in a scrub oak ecosystem[J]. Biogeochemistry,2007, 82(2):201-216.
    [31]邱良祝,朱脩玥,马彪,等.生物质炭热解炭化条件及其性质的文献分析[J].植物营养与肥料学报2017, 23(6):1622-1630.QIU Liang-zhu, ZHU Xiu-yue, MA Biao, et al. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1622-1630.
    [32]李九玉,赵安珍,袁金华,等.农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响[J].土壤, 2015, 47(2):334-339.LI Jiu-yu, ZHAO An-zhen, YUAN Jin-hua, et al. Amelioration effects of crop residue-derived biochars on soil acidity and canola yield in red soil[J]. Soil, 2015, 47(2):334-339.
    [33] Liang B, Lehmann J, Sohi S P, et al. Black carban affects the cycling of non-black carban in soil[J]. Organic Geochemistry, 2010, 41(2):206-213.
    [34]王贺东,吕泽先,刘成,等.生物质炭施用对马铃薯产量和品质的影响[J].土壤, 2017, 49(5):888-892.WANG He-dong, LüZe-xian, LIU Cheng, et al. Effects of biochar on potato yield and quality[J]. Soil, 2017, 49(5):888-892.
    [35]陈雪娇,杨丹丹,李贵桐,等.不同温度生物质炭复混肥对小白菜和樱桃萝卜产量及硝酸盐的影响[J].中国农学通报, 2014, 30(34):30-34.CHEN Xue-jiao, YANG Dan-dan, LI Gui-tong, et al. The effects of biochar complex fertilizer under different temperatures on the yield and nitrate content of Brassica chinensis and Raphanus sativus var.radculus[J].Chinese Agricultural Science Bulletin,2014,30(34):30-34.
    [36] Yu L, Lu X, He Y, et al. Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop[J]. J Soils Sediments, 2017, 17(3):599-610.
    [37]何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报, 2011, 27(15):16-25.HE Xu-sheng, ZHANG Shu-qing, SHE Diao, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15):16-25.
    [38] Liu B, M?rkved P T, Frosteg?rd?, et al. Denitrification gene pools,transcription and kinetics of NO, N2O and N2 production as affected by soil pH[J]. FEMS Microbiol Ecol, 2010, 72(3):407–417.
    [39] He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in northern China[J]. Environmental Pollution, 2009, 157(5):1666-1672.
    [40]顾美英,刘洪亮,李志强,等.新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J].中国农业科学, 2014, 47(20):4128-4138.GU Mei-ying, LIU Hong-liang, LI Zhi-qiang, et al. Impact of biochar application on soil nutrients and microbial diversities in continuous cultivated cotton fields in Xinjiang[J]. Scientia Agricultura Sinica,2014, 47(20):4128-4138.
    [41] Dong Y, Scharffe D, Qi Y C, et al. Nitrous oxide emissions from cultivated soils in the north China Plain[J]. Tellus B, 2001, 53(1):1-9.
    [42]陈中云,闵航,陈美慈,等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报, 2001, 21(9):1498-1505.CHEN Zhong-yun, MIN Hang, CHEN Mei-ci, et al. Studies on relationships among methane emission and methane-oxidizing and methanogenic bacteria in three types of rice-field soil[J]. Acta Ecologica Sinica, 2001, 21(9):1498-1505.
    [43]蔡祖聪,沈光裕,颜晓元,等.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报, 1998, 35(2):145-153.CAI Zu-cong, SHEN Guang-yu, YAN Xiao-yuan, et al. Effects of soil texture, soil temperature and Eh on methane emission from rice paddy fields[J]. Acta Pedologica Sinica, 1998, 35(2):145-153.
    [44]葛慧敏,陈璐,于一帆,等.稻田甲烷排放与减排的研究进展[J].中国农学通报, 2015, 31(3):160-166.GE Hui-min, CHEN Lu, YU Yi-fan, et al. Research progress on methane emission and emission reduction in rice fields[J]. Chinese Agricultural Science Bulletin, 2015, 31(3):160-166.
    [45] Sun B F, Zhao H, Lv Y Z, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 2016, 15(2):440-450.
    [46] Liu Y X, Yang M, Wu Y M, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6):930-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700