用户名: 密码: 验证码:
双功能过渡金属化合物的构建与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and application of bifunctional transition metal compounds
  • 作者:黄丽萍 ; 周琳 ; 高媛 ; 熊昆
  • 英文作者:HUANG Liping;ZHOU Lin;GAO Yuan;XIONG Kun;Chongqing Key Laboratory of Catalysis and New Environmental Materials,Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education,College of Environment and Resources,Chongqing Technology and Business University;Chengdu Radio & TV University;
  • 关键词:电解水 ; 氢能 ; 双功能催化剂 ; 析氢反应 ; 析氧反应
  • 英文关键词:water electrolysis;;hydrogen energy;;bifunctional catalysts;;hydrogen evolution reaction;;oxygen evolution reaction
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室废油资源化技术与装备教育部工程研究中心;成都广播电视大学;
  • 出版日期:2018-11-30
  • 出版单位:功能材料
  • 年:2018
  • 期:v.49;No.422
  • 基金:国家自然科学基金资助项目(21606028);; 重庆市基础科学与前沿技术研究资助项目(cstc2017jcyjAX0209);; 重庆市教委科学技术研究资助项目(KJ1600630);重庆市教委科学技术研究资助项目(KJ600630,KJQN201800819);; 催化与环境新材料重庆市重点实验室开放资助项目(CQCM-2016-03);; 重庆工商大学科研启动资助项目(2016-56-03)
  • 语种:中文;
  • 页:GNCL201811002
  • 页数:9
  • CN:11
  • ISSN:50-1099/TH
  • 分类号:11-19
摘要
氢能作为一种清洁能源,通过不可储存的可再生资源发电催化水分解制氢,被认为是解决能源和环境危机最有前景的技术之一。电解水反应必须使用高效催化剂降低析氢反应(HER)和析氧反应(OER)的过电势,因此开发高效、廉价的HER-OER双功能催化剂具有简化整体系统和降低成本的优势。综述报道了近3年HER-OER双功能催化剂的最新发展,对几种主要类型的双功能全电解水催化剂的合成、催化活性、稳定性及增强活性的方法进行了详细讨论,并对双功能催化剂面临的挑战和发展方向进行了展望。
        Hydrogen energy as a clean energy is considered to be one of the most promising technologies to solve the energy crisis and environmental crisis.Electrochemically splitting water into hydrogen by renewable energy has attracted much attention.Electrolytic water reactions must use high-efficiency catalysts to reduce the overpotentials of the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER).Therefore,the development of high-efficient,inexpensive bifunctional catalysts has the advantage of simplifying the overall system and reducing costs.In this article,the latest advancements in several major types of the HER-OER bifunctional catalysts for the past three years were reviewed,including the synthesis,catalytic activity,and stability.Additionally,the prospects for the challenges and research directions were proposed to shed light on future development of dual-function catalysts.
引文
[1] Du Jingjing,Li Na,Xu Jianxiong,et al.The progress of research on the electrode materials for hydrogen evolution in water electrolysis[J].Journal of Functional Materials,2015,46(9):09001-09006(in Chinese).杜晶晶,李娜,徐建雄,等.电解水析氢电极材料的研究新进展[J].功能材料,2015,46(9):09001-09006.
    [2] Yu L,Xia B Y,Wang X,et al.General formation of MMoS3(M=Co,Ni)hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J].Advanced Materials,2015,28(1):92-97.
    [3] Cheng F,Shen J,Peng B,et al.Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J].Nature Chemistry,2011,3(1):79-84.
    [4] Zhang M,Respinis M D,Frei H,et al.Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst[J].Nature Chemistry,2014,6(4):362-367.
    [5] Shu X Z,Zhang M,He Y,et al.Dual visible light photoredox and gold-catalyzed arylative ring expansion[J].Journal of the American Chemical Society,2014,136(16):5844-5847.
    [6] Du S C,Ren Z Y,Zhang J,et al.Co3O4nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting[J].Chemical Communications,2015,51(38):8066-8069.
    [7] Zhu Y P,Ma T Y,Jaroniec M,et al.Self-templating synthesis of hollow Co3O4microtube arrays for highly efficient water electrolysis[J].Angewandte Chemie International Edition,2017,56(5):1324-1328.
    [8] Zhang S,Yu X B,Yan F,et al.N-Doped graphene-supported Co@CoO core-shell nanoparticles as high-performance bifunctional electrocatalysts for overall water splitting[J].Journal of Materials Chemistry A,2016,4(31):12046-12053.
    [9] Islam M,Faisal S N,Akhter T,et al.Liquid-crystal-mediated 3D macrostructured composite of Co/Co3O4 embedded in graphene:free-standing electrode for efficient water splitting[J].Particle&Particle Systems Characterization,2017,34(9):1600386.
    [10] Jiao L,Zhou Y X,Jiang H L,et al.Metal-organic framework-based CoP/reduced graphene oxide:highperformance bifunctional electrocatalyst for overall water splitting[J].Chemical Science,2016,7(3):1690-1695.
    [11] Wang J M,Yang W R,Liu J Q,et al.CoP2nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting[J].Journal of Materials Chemistry A,2016,4(13):4686-4690.
    [12] Chang J F,Liang L,Li C Y,et al.Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for water electrolysis cell and the origin for cell performance degradation[J].Green Chemistry,2016,18(8):2287-2295.
    [13] Li W,Gao X F,Xiong D H,et al.Vapor-solid synthesis of monolithic single crystalline CoP nanowire electrodes for efficient and robust water electrolysis[J].Chemical Science,2017,8(4):2952-2958.
    [14] Zhu H,Zhang J F,Zhang R P,et al.When cubic cobalt sulfide meets layered molybdenum disulfide:a core-shell system toward synergetic electrocatalytic water splitting[J].Advanced Materials,2015,27(32):4752-4759.
    [15] Peng S J,Li L L,Zhang J,et al.Engineering Co9S8/WS2array films as bifunctional electrocatalysts for efficient water splitting[J].Journal of Materials Chemistry A,2017,5(44):23361-23368.
    [16] Guo Y N,Tang J,Wang Z L,et al.Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting[J].Nano Energy,2018,47:494-502.
    [17] Guan C,Liu X M,Elshahawy A M,et al.Metal-organic framework derived hollow CoS2nanotube arrays:an efficient bifunctional electrocatalyst for overall water splitting[J].Nanoscale Horizons,2017,2(6):342-348.
    [18] Guo Y N,Tang J,Qian H Y,et al.One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts[J].Chemistry of Materials,2017,29(13):5566-5573.
    [19] Xiong Kun,Gao Yuan,Zhou Guilin.Design and development of non-Pt catalysts in water electrolysis for hydrogen production[J].The Chinese Journal of Nonferrous Metals,2017,27(6):1289-1301(in Chinese).熊昆,高媛,周桂林.电解水析氢非铂催化剂的设计与发展[J].中国有色金属学报,2017,27(6):1289-1301.
    [20] Chang Jinfa,Xiao Yao,Luo Zhaoyan,et al.Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J].Acta Physico-Chimica Sinica,2016,32(7):1556-1592(in Chinese).常进法,肖瑶,罗兆艳,等.水电解制氢非贵金属催化剂的研究进展[J].物理化学学报,2016,32(7):1556-1592.
    [21] Chaudhari N K,Jin H,Kim B,et al.Nanostructured materials on 3Dnickel foam as electrocatalysts for water splitting[J].Nanoscale,2017,9(34):12231-12247.
    [22] Feng L L,Yu G T,Wu Y Y,et al.High-index faceted Ni3S2nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J].Journal of the American Chemical Society,2015,137(44):14023-14026.
    [23] Ren J T,Yuan Z Y.Hierarchical nickel sulfide nanosheets directly grown on Ni foam:a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium[J].ACS Sustainable Chemistry&Engineering,2017,5(8):7203-7210.
    [24] Zhang J,Wang T,Darius P,et al.Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J].Angewandte Chemie International Edition,2016,55(23):6702-6707.
    [25] Cui Z,Ge Y C,Chu H,et al.Controlled synthesis of Mo-doped Ni3S2 nano-rods:an efficient and stable electro-catalyst for water splitting[J].Journal of Materials Chemistry A,2017,5:1595-1602.
    [26] Yang N,Tang C,Wang K Y,et al.Iron-doped nickel disulfide nanoarray:a highly efficient and stable electrocatalyst for water splitting[J].Nano Research,2016,9(11):3346-3354.
    [27] Liu H J,He Q,Jiang H L,et al.Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting[J].ACS Nano,2017,11(11):11574-11583.
    [28] You B,Jiang N,Sheng M L,et al.Hierarchically porous urchin-Like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J].ACS Catalysis,2016,6(2):714-721.
    [29] Xiong K,Huang L P,Gao Y,et al.Formation of a thinlayer of nickel hydroxide on nickel phosphide nanopillars for hydrogen evolution[J].Electrochemistry Communications,2018,92:9-13.
    [30] Pu Z H,Xue Y,Li W Q,et al.Efficient water splitting catalyzed by flexible NiP2nanosheet array electrodes under both neutral and alkaline solutions[J].New Journal of Chemistry,2017,41(5):2154-2159.
    [31] Li J Y,Yan M,Zhou X M,et al.Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting[J].Advanced Functional Materials,2016,26(37):6785-6796.
    [32] Wang P Y,Pu Z H,Li Y H,et al.Iron-doped nickel phosphide nanosheet arrays:an efficient bifunctional electrocatalyst for water splitting[J].ACS Applied Material&Interfaces,2017,9(31):26001-26007.
    [33] Yu F,Zhou H Q,Huang Y F,et al.High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J].Nature Communications,2018,9:2551.
    [34] Shalom M,Ressnig D,Yang X F,et al.Nickel nitride as an efficient electrocatalyst for water splitting[J].Journal of Materials Chemistry A,2015,3(15):8171-8177.
    [35] Zhang B,Xiao C H,Xie S M,et al.Iron-nickel nitride nanostructures in situ grown on surface-redox etching nickel foam:efficient and ultrasustainable electrocatalysts for overall water splitting[J].Chemistry of Materials,2016,28(19):6934-6941.
    [36] Liu T T,Li M,Jiao C L,et al.Design and synthesis of integrally structured Ni3N nanosheets/carbon microfibers/Ni3N nanosheets for efficient full water splitting catalysis[J].Journal of Materials Chemistry A,2017,5(19):9377-9390.
    [37] Yan Y,Thia L,Xia B Y,et al.Construction of efficient3Dgas evolution electrocatalyst for hydrogen evolution:porous FeP nanowire arrays on graphene sheets[J].Advanced Science,2015,2(8):1500120.
    [38] Jiang P,Liu Q,Liang Y,et al.A cost-effective 3Dhydrogen evolution cathode with high catalytic activity:FeP nanowire array as the active phase[J].Angewandte Chemie International Edition,2014,53(47):12855-12859.
    [39] Gloaguen F,Lawrence J D,Rauchfuss T B,et al.Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J].Journal of the American Chemical Society,2001,123(38):9476-9477.
    [40] Bao J,Zhang X,Fan B,et al.Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J].Angewandte Chemie International Edition,2015,54(25):7399-7404.
    [41] Gong M,Li Y,Wang H,et al.An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J].Journal of the American Chemical Society,2013,135(23):8452-8455.
    [42] Burke M S,Kast M G,Trotochaud L,et al.Cobalt-iron(oxy)hydroxide oxygen evolution electrocatalysts:the role of structure and composition on activity,stability,and mechanism[J].Journal of the American Chemical Society,2015,137(10):3638-3648.
    [43] Zhang R Z,Zhang C M,Chen W,et al.FeP embedded in N,P dual-doped porous carbon nanosheets:an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions[J].Journal of Materials Chemistry A,2016,4(48):18723-18729.
    [44] Martindale B C M,Reisner E,Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration[J].Advanced Energy Materials,2016,6(6):1502095.
    [45] Yan Y,Xia B Y,Ge X,et al.A flexible electrode based on iron phosphide nanotubes for overall water splitting[J].Chemistry-A European Journal,2015,21(50):18062-18067.
    [46] Yu Z Y,Duan Y,Gao M R,et al.A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting[J].Chemical Science,2017,8(2):968-973.
    [47] Li G,Wang X L,Min H S,et al.Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte[J].Journal of Materials Chemistry A,2017,5(22):10895-10901.
    [48] Zhang J,Qu L,Shi G,et al.N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J].Angewandte Chemie International Edition,2016,55(6):2230-2234.
    [49] Dai L,Xue Y,Qu L,et al.Metal-free catalysts for oxygen reduction reaction[J].Chemical Reviews,2015,115(11):4823-4892.
    [50] Zhang J,Xia Z,Dai L,et al.Carbon-based electrocatalysts for advanced energy conversion and storage[J].Science Advances,2015,1(7):e1500564.
    [51] Ma T Y,Dai S,Qiao S Z,et al.Self-supported electrocatalysts for advanced energy conversion processes[J].Materials Today,2016,19(5):265-273.
    [52] Cui W,Liu Q,Cheng N,et al.Activated carbon nanotubes:a highly-active metal-free electrocatalyst for hydrogen evolution reaction[J].Chemical Communications,2014,50(66):9340.
    [53] Lin Z,Waller G H,Liu Y,et al.Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions[J].Carbon,2013,53(3):130-136.
    [54] Zhao Y,Nakamura R,Kamiya K,et al.Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J].Nature Communications,2013,4(2):2390.
    [55] Hu C G,Dai L M.Multifunctional carbon-based metalfree electrocatalysts for simultaneous oxygen reduction,oxygen evolution,and hydrogen evolution[J].Advanced Materials,2017,29(9):1604942.
    [56] Lai J P,Li S P,Wu F X,et al.Unprecedented metalfree 3D porous carbonaceous electrodes for full water splitting[J].Energy&Environmental Science,2016,9(4):1210-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700