用户名: 密码: 验证码:
综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:COMBINING STATISTICAL MODEL AND PHYSICAL MODEL FOR REFINED ASSESSMENT OF GEOLOGICAL DISASTER——A CASE STUDY OF LONGSHAN COMMUNITY IN FUJIAN PROVINCE
  • 作者:仉义星 ; 兰恒星 ; 李郎平 ; 伍宇明 ; 陈志超 ; 陈俊辉
  • 英文作者:ZHANG Yixing;LAN Hengxing;LI Langping;WU Yuming;CHEN Zhichao;CHEN Junhui;State Key Laboratory of Resources and Environmental Information Systems,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Geological Engineering and Geomatics,Chang'an University;Fujian Geological Engineering Survey Institute;
  • 关键词:统计模型 ; 物理模型 ; 地质灾害 ; 精细评估
  • 英文关键词:Statistical model;;Physical model;;Geological disaster;;Refined assessment
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室;中国科学院大学;长安大学地质工程与测绘学院;福建省地质工程勘察院;
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:国家自然科学基金项目(41525010,41790443,41807291,41701458);; 福建省科技厅引导性项目(2016Y0003);; 福建省广义地质项目(20171207);; 中国科学院战略性先导科技专项(A类)(XDA23090301,XDA19040304)资助~~
  • 语种:中文;
  • 页:GCDZ201903020
  • 页数:15
  • CN:03
  • ISSN:11-3249/P
  • 分类号:135-149
摘要
地质灾害易发性和危险性评价对象相同但评价内容有差异,即两者表达地质灾害的时间、空间和强度信息各有不同。本文将崩塌滑坡易发性中的统计模型和危险性评价中的物理模型进行结合,综合统计模型客观预测空间位置信息的优点以及物理模型模拟包含地质灾害发生机制的优势,弥补了区域统计模型无法预测灾害强度信息的不足,也对物理模型模拟的空间位置进行了有效的控制和修正,进而完成区域崩塌滑坡的易发性和危险性等级综合分析,实现对区域崩塌滑坡潜在高风险位置的精细评估。本文以福建省福鼎市龙山社区为例,利用野外获取的高清影像、地形、钻孔和地质灾害等数据,通过综合统计模型评价和物理模型危险性评估,完成潜在高风险位置的精细化分析。研究结果表明:需要进行重点排查治理的区域约占社区附近山体总面积的26. 92%;研究区域内需要进行集中排查与治理的区域有5个,其中3个区域需要进行重点治理,其潜在高风险区域与野外地质灾害调查区域隐患点吻合; 5个高风险区域直接对180幢左右楼房(约360余户居民)的安全构成威胁,该评估将野外调研中划定的大范围高风险区域精细化处理,并验证了该评价方法体系的可行性。该评价方法体系为区域崩塌滑坡地质灾害精细化排查和治理提供了工作思路和指导。
        The evaluation targets of geological hazard susceptibility and risk assessment are the same but the evaluation contents including time,space and intensity information of geological disasters are different. This paper combines the statistical model in the susceptibility with the physical model in the risk assessment on collapse landslides,and combines the advantages of statistical model predicting spatial location information objectively with the advantages of physical model simulation including geological disaster occurrence mechanisms. It makes up for the insufficiency of regional statistical model predicting the disaster intensity information. It also effectively controls or corrects the spatial position of the physical model simulation. Then a comprehensive analysis is completed on the susceptibility and risk level of the collapse and landslide,which achieves a refined assessment of the potential highrisk location of the regional collapse and landslide. This paper takes the Longshan community in Fuding County,Fujian Province as an example. It uses data from high-definition images,terrain,boreholes and geological disasters acquired in the field. With the combination of statistical model and physical model,the refined evaluation of potential high-risk locations is completed. The research results show that: the area that needs to be focused on governance is about 26. 92% of the total area of the mountain near the community. There are five areas in the community that require centralized investigation and governance. Three of them need to be focused on key governance. The potential high-risk areas coincide with the hidden danger points in the investigation area. The five high-risk areas directly threaten the safety of 180 buildings( about 360 householders). Refining the large-scale high-risk areas is delineated in field research. The feasibility of the evaluation method system is verified. The evaluation method system provides working ideas and guidance for the refined investigation and governance of regional collapse and landslide disasters.
引文
Corominas J,van Westen C,Frattini P,et al.2014.Recommendations for the quantitative analysis of landslide risk[J].Bulletin of Engineering Geology and the Environment,73(2):209-263.
    Ding Q,Chen W,Hong H.2017.Application of frequency ratio,weights of evidence and evidential belief function models in landslide susceptibility mapping[J].Geocarto International,32(6):619-639.
    Fan Z Y,Gou X F,Qin M Y,et al.2018.Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J].Journal of Engineering Geology,26(2):340-347.
    Gong K,Yang T,Xia C H,et al.2017.Assessment on the hazard of debris flow based on FLO-2D:A case study of debris flow in Cutou Gully,Wenchuan,Sichuan[J].Journal of Water Resources&Water Engineering,28(6):134-138.
    Guo G,Chen J,Li M H,et al.2013.Statistic relationship between slope gradient and landslide probability in soil slopes around reservoir[J].Journal of Engineering Geology,21(4):607-612.
    He Y J.1995.Characteristics and mechanism of Major geological hazards in Fujian province and protection and controlling method against them[J].Geology of Fujian,(4):263-271.
    Hungr O,Leroueil S,Picarelli L.2014.The Varnes classification of landslide types,an update[J].Landslides,11(2):167-194.
    Jing F.2010.The research of geo-environmental sensitivity regionalization in Fujian province[D].Fujian:Fujian Agriculture and Forestry University.
    Jiang D M,Li Y M,Bao H S.2016.Study on sensitivity in disasterpregnant environmental factors of landslide in Lushui County[J].Journal of Natural Disasters,25(4):109-119.
    Kang C,Shen W W,Zhang F Y,et al.2011.Application of deterministic model to analyzing stability of hillslope of loess gully area[J].Rock and Soil Mechanics,32(1):207-210.
    Lan H X,Li L P,Zhang Y S,et al.2013.Risk assessment of debris flow in Yushu seismic area in China:a perspective for the reconstruction[J].Natural Hazards and Earth System Sciences,13(11):2957-2968.
    Lan H X,Martin C D,Lim C H.2007.RockFall analyst:A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J].Computers&Geosciences,33(2):262-279.
    Leine R I,Schweizer A,Christen M,et al.2014.Simulation of rockfall trajectories with consideration of rock shape[J].Multibody System Dynamics,32(2):241-271.
    Li L P,Lan H X,Guo C B,et al.2017a.Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J].Geoscience,31(5):911-929.
    Li L P,Lan H X,Guo C B,et al.2017b.A modified frequency ratio method for landslide susceptibility assessment[J].Landslides,14(2):727-741.
    Li L P,Lan H X.2015.Probabilistic modeling of rockfall trajectories:a review[J].Bulletin of Engineering Geology and the Environment,74(4):1163-1176.
    Liu H J,Lan H X.2012.Rockfall disaster simulation and risk assessment on the Dujiangyan-Wenchuan highway after“5·12”Earthquake[J].Resources Science,34(2):345-352.
    Qi X,Huang B L,Liu G N,et al.2017.Landslide susceptibility assessment in the Three Gorges area,China,Zigui synclinal basin,using GIS technology and frequency ratio model[J].Journal of Geomechanics,23(1):97-104.
    Rammer W,Brauner M,Dorren L K A,et al.2010.Evaluation of a 3Drockfall module within a forest patch model[J].Natural Hazards and Earth System Sciences,10(4):699-711.
    Sharma S,Mahajan A K.2018.A comparative assessment of information value,frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed,India[J].Bulletin of Engineering Geology and the Environment,(1):1-18.
    Song Z,Ni H Y,Zhou H F,et al.2016.Risk assessment of seismic landslide within small region based on multi-level physical and mechanical parameters:a case study of Shimian and adjacent areas in the upper reaches of Yangtze River[J].Journal of Geomechanics,22(3):760-770.
    Tang C,Ma G C.2015.Small regional geohazards susceptibility mapping based on geomorphic unit[J].Scientia Geographica Sinica,35(1):91-98.
    Trappmann D,Stoffel M,Corona C.2015.Achieving a more realistic assessment of rockfall hazards by coupling three-dimensional process models and field-based tree-ring data[J].Earth Surface Processes and Landforms,39(14):1866-1875.
    Vu T T,Ranzi R.2017.Flood risk assessment and coping capacity of floods in central Vietnam[J].Journal of Hydro-environment Research,14:44-60.
    Wang J J,Yin K L,Xiao L L.2014.Landslide susceptibility assessment based on GIS and weighted information value:a case study of Wanzhou district,Three Gorges Reservoir[J].Chinese Journal of Rock Mechanics and Engineering,33(4):797-808.
    Wendeler C,Bühler Y,Bartelt P,et al.2017.Application of threedimensional rockfall modelling to rock face engineering[J].Geomechanics and Tunnelling,10(1):74-80.
    Westen C J V,Castellanos E,Kuriakose S L.2008.Spatial data for landslide susceptibility,hazard,and vulnerability assessment:An overview[J].Engineering Geology,102(3):112-131.
    Wu C Y,Qiao J P.2005.The contributing rate research of slope aspect to landslide growth from Yunyang to Wushan in Three Gorges reservoir region[J].Journal of Sichuan University(Engineering Science Edition),37(4):25-29.
    Wu Y M,Lan H X,Gao X,et al.2014.Rainfall threshold of storminduced landslides in typhoon areas:a case study of Fujian province[J].Journal of Engineering Geology,22(2):255-262.
    Xin X,Zhang F Y.2018.Application of a 3D deterministic model for predicting shallow loess landslide stability[J].Chinese Journal of Engineering,40(4):397-406.
    Xu Y Z,Yu Y N,Li D Y,et al.2016.GIS and information model based landslide susceptibility assessment in granite area of Guangxi Province[J].Journal of Engineering Geology,24(4):693-703.
    Yang C,Lin G F,Zhang M F,et al.2016.Soil landslide susceptibility assessment based on DEM[J].Journal of Geo-information Science,18(12):1624-1633.
    Youssef A M,Al-Kathery M,Pradhan B.2015.Landslide susceptibility mapping at Al-Hasher area,Jizan(Saudi Arabia)using GIS-based frequency ratio and index of entropy models[J].Geosciences Journal,19(1):113-134.
    Zhang Z W,Yang F,Chen H,et al.2016.GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models[J].Environmental Earth Sciences,75(11):1-12.
    Zheng X.2012.Screening analysis of landslide geological environment background factors based on the CF probability model[J].Geology of Fujian,31(3):278-283.
    樊芷吟,苟晓峰,秦明月,等.2018.基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J].工程地质学报,26(2):340-347.
    龚柯,杨涛,夏晨皓,等.2017.基于FLO-2D的泥石流危险性评价——以四川省汶川县绵虒镇簇头沟为例[J].水资源与水工程学报,28(6):134-138.
    郭果,陈筠,李明惠,等.2013.土质滑坡发育概率与坡度间关系研究[J].工程地质学报,21(4):607-612.
    何永金.1995.福建省主要地质灾害的特点,成因及其对策[J].福建地质,(4):263-271.
    江峰.2010.福建省地质环境敏感性区划研究[D].福建:福建农林大学.
    蒋德明,李益敏,鲍华姝.2016.泸水县滑坡孕灾环境因素敏感性研究[J].自然灾害学报,25(4):109-119.
    康超,谌文武,张帆宇,等.2011.确定性模型在黄土沟壑区斜坡稳定性预测中的应用[J].岩土力学,32(1):207-210.
    李郎平,兰恒星,郭长宝,等.2017.基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J].现代地质,31(5):911-929.
    刘洪江,兰恒星.2012.“5·12”震后都江堰-汶川公路崩塌灾害模拟及危险性评价[J].资源科学,34(2):345-352.
    齐信,黄波林,刘广宁,等.2017.基于GIS技术和频率比模型的三峡地区秭归向斜盆地滑坡敏感性评价[J].地质力学学报,23(1):97-104.
    宋志,倪化勇,周洪福,等.2016.基于多层次物理力学参数的小区域地震滑坡危险性评估——以长江上游石棉县城及周边为例[J].地质力学学报,22(3):760-770.
    唐川,马国超.2015.基于地貌单元的小区域地质灾害易发性分区方法研究[J].地理科学,35(1):91-98.
    王佳佳,殷坤龙,肖莉丽.2014.基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J].岩石力学与工程学报,33(4):797-808.
    吴彩燕,乔建平.2005.三峡库区云阳-巫山段坡向因素对滑坡发育的贡献率研究[J].四川大学学报(工程科学版),37(4):25-29.
    伍宇明,兰恒星,高星,等.2014.台风暴雨型滑坡降雨阈值曲线研究——以福建地区为例[J].工程地质学报,22(2):255-262.
    辛星,张帆宇.2018.三维确定性模型在浅层黄土滑坡稳定性预测中的应用[J].工程科学学报,40(4):397-406.
    许英姿,卢玉南,李东阳,等.2016.基于GIS和信息量模型的广西花岗岩分布区滑坡易发性评价[J].工程地质学报,24(4):693-703.
    杨城,林广发,张明锋,等.2016.基于DEM的福建省土质滑坡敏感性评价[J].地球信息科学学报,18(12):1624-1633.
    郑侠.2012.基于CF概率模型的滑坡致滑地质环境背景因子筛选分析[J].福建地质,31(3):278-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700