用户名: 密码: 验证码:
大功率IGBT基区物理模型的非准静态建模方法综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Non-quasi Static Modeling Method in the Base Region of High Power IGBT
  • 作者:段耀强 ; 罗毅飞 ; 肖飞 ; 马伟明
  • 英文作者:DUAN Yaoqiang;LUO Yifei;XIAO Fei;MA Weiming;School of Electrical and Electronics Engineering,Huazhong University of Science and Technology;National Key Laboratory of Science and Technology on Vessel Integrated Power System,Naval University of Engineering;
  • 关键词:绝缘栅双极晶体管(IGBT) ; 物理模型 ; 建模方法 ; 双极扩散方程 ; 非准静态
  • 英文关键词:insulated gate bipolar transistors(IGBT);;physics-based model;;modeling method;;ambipolar diffusion equation;;non-quasi static(NQS)
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:华中科技大学电气与电子工程学院;海军工程大学舰船综合电力国防科技重点实验室;
  • 出版日期:2019-04-18 13:15
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:国家自然科学基金重大项目(51490681);; 国家重点基础研究发展计划(973计划)(2015CB251004)~~
  • 语种:中文;
  • 页:GDYJ201907006
  • 页数:12
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:53-64
摘要
在研究高压大功率绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)芯片电气物理模型的基础上,对现有研究成果中模型使用的非准静态建模方法进行了总结、分析、对比和分类。大功率IGBT半导体芯片具有承受高电压的低掺杂宽基区,该区域的非准静态表征一直以来都是IGBT模块物理建模的重难点。已有国内外研究人员针对该问题提出大量不同建模方法,但是缺乏对这些方法之间的区别、联系和优缺点等系统科学地归纳和总结。为此根据建模原理揭示了现有IGBT芯片物理模型漂移区非准静态建模方法的区别和联系,将其归纳为形函数模型、空间变换模型、时间变换模型以及集总电荷模型。首先,按照上述模型分类分析了每类建模方法所采用的数学原理。其次,基于模型求解方式的不同,对各类建模方法的优势和局限性进行了对比和讨论。研究内容和结果为IGBT芯片内部宽基区物理模型的准静态建模方法的研究和选取提供了理论指导。
        We review, analyze, and compare the non-quasi static modeling methods for the bipolar base region of high power IGBT chip published in the literature, and classify them into different categories.Because high-power IGBT semiconductor chips have low-doped wide-band areas which can withstand high voltage, the non-quasi static description of the wide base region is always a challenging task for the physical modeling of high-power IGBT. In view of this problem,many researchers proposed a lot of different modeling methods. However, the differences and connections between these methods, as well as the advantages and disadvantages were not summed up in a systematic way. According to the difference in mathematical solutions, the published physics-based models are classified into four classes: the shape function model, the transform model with respect to space, the transform model with respect to time and the lumped-charge model.The mathematical principle of each modeling method is expounded. Besides, based on the differences of mathematical types, the advantages and limitations of each approach are compared and analyzed. The research of this paper can provide theoretical guidance for the research and selection of the non-quasi static modeling method of the wide base region in the physical modeling of high power semiconductor devices.
引文
[1]龚熙国,龚熙战.高压IGBT模块应用技术[M].北京:机械工业出版社,2015:32-33.GONG Xiguo,GONG Xizhan.Application technology of high voltage IGBT module[M].Beijing,China:Machinery Industry Press,2015:32-33.
    [2]WU R.Electro-thermal modeling of modern power devices for studying abnormal operating conditions[D].Aalborg,Denmark:Aalborg University,2015.
    [3]唐勇.大容量特种高性能电力电子系统中器件模型理论研究[D].武汉:海军工程大学,2010.TANG Yong.Study on device model theory for high capacity and high performance power electronic system[D].Wuhan,China:Navy University of Engineering,2010
    [4]杨媛,文阳,李国玉.大功率IGBT模块及驱动电路综述[J].高电压技术,2018,44(10):3207-3220.YANG Yuan,WEN Yang,LI Guoyu.High power IGBT module and driver circuit review[J].High Voltage Engineering,2018,44(10):3207-3220.
    [5]KUANG S,WILLIAMS B W,FINNEY S J.A review of IGBT models[J].IEEE Transactions on Power Electronics,2000,15(6):1250-1266.
    [6]WANG H,LISERRE M,BLAABJERG F.Toward reliable power electronics:challenges,design tools,and opportunities[J].IEEE Industrial Electronics Magazine,2013,7(2):17-26.
    [7]CHENG Y,HU C.MOSFET modeling&BSIM3 user’s guide[M].Norwell,USA:Kluwer Academic Publishers,2002.
    [8]JI S,LU T,ZHAO Z,et al.Physical model with parameter extraction method for Fuji electric 1.7 k V IGBT[C]∥18th International Conference Electrical Machines and Systems.Pattaya City,Thailand:IEEE,2015:587-590
    [9]CHEN J,YANG J,YANG S,et al.A coupled circuit-ambipolar diffusion equation model and its solution methodology for insulated gate bipolar transistors[J].IEEE Transactions on Magnetics,2017,53(6):1-4.
    [10]CHEN Y,LUO H,LI W,et al.Analytical and experimental investigation on a dynamic thermo-sensitive electrical parameter with maximum dic/dt during turn-off for high power trench gate/field-stop IGBT modules[J].IEEE Transactions on Power Electronics,2017,32(8):6394-6404.
    [11]RICCIO M,FALCO G D,MIRONE P,et al.Accurate spice modeling of reverse-conducting IGBTs including self-heating effects[J].IEEETransactions on Power Electronics,2017,32(4):3088-3098.
    [12]XUE P,FU G,ZHANG D.Modeling inductive switching characteristics of high-speed buffer layer IGBT[J].IEEE Transactions on Power Electronics,2017,32(4):3075-3087.
    [13]WU R,IANNUZZO F,WANG H,et al.Electro-thermal modeling of high power IGBT module short-circuits with experimental validation[C]//2015 Annual Reliability and Maintainability Symposium(RAMS).Palm Harbor,USA:IEEE,2015:1-7.
    [14]LENA D,GROSSO M,BOCCA A,et al.A compact IGBT electro-thermal model in veriloga for fast system-level simulation[C]∥IECON 42nd Annual Conference of the IEEE Industrial Electronics Society.Florence,Italy:IEEE,2016:3793-3797.
    [15]PEDERSEN K B,PEDERSEN K.Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J].IEEETransactions on Power Electronics,2016,31(2):975-986.
    [16]张朋.IGBT模块电气特性建模研究[D].北京:中国科学院研究院,2012.ZHANG Peng.Research on the electrical modeling method of IGBTmodule[D].Beijing,China:Chinese Academy of Sciences,2012.
    [17]BALIGA B J.The IGBT device:physics,design and applications of the insulated gate bipolar transistor[M].Oxford,UK:William Andrew,2015:205.
    [18]BRYANT A T,PALMER P R,SANTI E,et al.Review of advanced power device models for converter design and simulation[C]∥2007IET-UK International Conference on Information and Communication Technology in Electrical Sciences(ICTES 2007).Tamil Nadu,Indian:IEEE,2007:1-6.
    [19]LINDER S.Power semiconductors[M].Italy:EPFL Press,2006:2.
    [20]HEFNER A R,DIEBOLT D M.An experimentally verified IGBTmodel implemented in the saber circuit simulator[J].IEEE Transactions on Power Electronics,1994,9(5):532-542.
    [21]KRAUS R,HOFFMANN K.An analytical model of IGBTs with low emitter efficiency[C]∥Proceedings International Symposium on Power Semiconductor Devices ICs.Monterey,USA:IEEE,2007:650-657.
    [22]JI S,ZHAO Z,LU T,et al.HVIGBT physical model analysis during transient[J].IEEE Transactions on Power Electronics,2013,28(5):2616-2624.
    [23]PITTET S,RUFER A.The equivalent electron density concept for static and dynamic modeling of the IGBT base in soft and hard-switching applications[J].IEEE Transactions on Power Electronics,2007,22(6):2223-2233.
    [24]SHENG K,FINNEY S J,WILLIAMS B W.A new analytical IGBTmodel with improved electrical characteristics[J].IEEE Transactions on Power Electronics,1999,14(1):98-107.
    [25]HEFNER A R.A dynamic electro-thermal model for the IGBT[J].IEEE Transactions on Industry Applications,1994,30(2):394-405.
    [26]TONE A,MIYAOKU Y,MIURA-MATTAUSCH M,et al.Accurate IGBT modeling under high-injection condition[C]∥2016 International Conference on Simulation of Semiconductor Processes and Devices(SISPAD).Nuremberg,Germany:IEEE,2016:181-187.
    [27]TAN J,ZHU J Y,LU J S,et al.Modeling and simulation of the insulated gate bipolar transistor turn-off voltage slope under inductive load[J].Acta Physica Sinica,2016:15.
    [28]普靖,罗毅飞,肖飞,等.针对高压IGBT的改进瞬态模型[J].高电压技术,2018,44(2):448-455.PU Jing,LUO Yifei,XIAO Fei,et al.Improved transient model for high voltage IGBT[J].High Voltage Engineering,2018,44(2):448-455.
    [29]周飞,赵成勇,徐延明,等.考虑热学特性的高压IGBT模块暂态模型[J].高电压技术,2016,42(7):2215-2223.ZHOU Fei,ZHAO Chengyong,XU Yangming,et al.Transient model of high voltage IGBT module considering thermal characteristics[J].High Voltage Engineering,2016,42(7):2215-2223.
    [30]BALIGA B J.Analytical modeling of IGBTs:challenges and solutions[J].IEEE Transactions on Electron Devices,2013,60(2):535-543.
    [31]KRAUS R,TURKES P,SIGG J.Physics-based models of power semiconductor devices for the circuit simulator spice[C]∥29th Annual IEEE Power Electronics Specialists Conference.Fukuoka,Japan:IEEE,1998:1726-1731.
    [32]KRAUS R,MATTAUSCH H J.Status and trends of power semiconductor device models for circuit simulation[J].IEEE Transactions on Power Electronics,1998,13(3):452-465.
    [33]Infineon.IGBT discrete finder[EB/OL].[2018-10-11].https://www.infineon.com/cms/en/tools/solution-finder/product-finder/igbt-discrete/.
    [34]FEILER W,GERLACH W,WIESE U.On the turn-off behavior of the NPT-IGBT under clamped inductive loads[J].Solid-State Electron,1996,39(1):59-67.
    [35]IGI?P.Exponential ADE solution based compact model of planar injection enhanced IGBT dedicated to robust power converter design[J].IEEE Transactions on Power Electronics,2015,30(4):1914-1924.
    [36]COTOROGEA M.Physics-based spice-model for IGBTs with transparent emitter[J].IEEE Transactions on Power Electronics,2009,24(12):2821-2832.
    [37]NIKIFOROV F,UVAROV A.Special functions of mathematical physics[M].Basel,Switzerland:Birkh?user.1988:317-318.
    [38]LETURCQ P,BERRAIES M O,MASSOL J L.Implementation and validation of a new diode model for circuit simulation[C]∥27th Annual IEEE Power Electronics Specialists Conference.Baveno,Germany:IEEE,1996:35-43.
    [39]KANG X,LU L,WANG X,et al.Characterization and modeling of the LPT CSTBT-the 5th generation IGBT[C]∥38th IAS Annual Meeting on Conference Record of the Industry Applications Conference.Salt Lake City,USA:IEEE,2003:982-987.
    [40]KANG X,SANTI E,HUDGINS J L,et al.Parameter extraction for a physics-based circuit simulator IGBT model[C]∥Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition.Miami Beach,USA:IEEE,2003:946-952.
    [41]KANG X,WANG X,LU L,et al.Physical modeling of IGBT turn on behavior[C]∥38th IAS Annual Meeting on Conference Record of the Industry Applications Conference.Salt Lake City,USA:IEEE,2003:988-993.
    [42]PALMER P R,SANTI E,HUDGINS J L,et al.Circuit simulator models for the diode and IGBT with full temperature dependent features[J].IEEE Transactions on Power Electronics,2003,18(5):1220-1229.
    [43]CAIAFA A,SNEZHKO A,HUDGINS J L,et al.Physics-based modeling of NPT and PT IGBTs at deep cryogenic temperatures[C]∥Conference Record of the 2004 IEEE Industry Applications Conference.Seattle,USA:IEEE,2004:2536-2541.
    [44]LU L,PYTEL S G,SANTI E,et al.Physical modeling of forward conduction in IGBTs and diodes[C]∥Fourtieth IAS Annual Meeting.Conference Record of the 2005 Industry Applications Conference.Hong Kong,China:IEEE,2005:2635-2642.
    [45]LU L,PYTEL S G,SANTI E,et al.Modeling of IGBT resistive and inductive turn-on behavior[C]∥Fourtieth IAS Annual Meeting.Conference Record of the 2005 Industry Applications Conference.Hong Kong,China:IEEE,2005:2643-2648.
    [46]BRYANT A T,LU L,SANTI E,et al.Modeling of IGBT resistive and inductive turn-on behavior[J].IEEE Transactions on Industry Applications,2008,44(3):904-914.
    [47]LU L,BRYANT A,HUDGINS J L,et al.Physics-based model of planar-gate IGBT including MOS side two-dimensional effects[J].IEEE Transactions on Industry Applications,2010,46(6):2556-2567.
    [48]BRYANT A,YANG S,MAWBY P,et al.Investigation into IGBTdv/dt during turn-off and its temperature dependence[J].IEEE Transactions on Power Electronics,2011,26(10):3019-3031.
    [49]DU M X,WEI K X.A physics-based model of insulated gate bipolar transistor with all free-carrier injection conditions in base region[J].Acta Physica Sinica,2011:10-17.
    [50]NAPOLI E,STROLLO A G M,SPIRITO P.Two-dimensional modeling of on state voltage drop in IGBT[C]∥1997 21st International Conference on Microelectronics.Yugoslavia:IEEE,1997:505-510.
    [51]STROLLO A G M.A new IGBT circuit model for spice simulation[C]∥Record 28th Annual IEEE Power Electronics Specialists Conference.[S.l.]:IEEE,1997:866-872.
    [52]STROLLO A G M.A new spice model of power pin diode based on asymptotic waveform evaluation[J].IEEE Transactions on Power Electronics,1997,12(1):12-20.
    [53]LINVILL J G.Lumped models of transistors and diodes[J].Proceedings of the IRE,1958,46(6):1141-1152.
    [54]LAURITZEN P O,MA C L.A simple diode model with reverse recovery[J].IEEE Transactions on Power Electronics,1991,6(2):188-191.
    [55]IANNUZZO F,BUSATTO G.A lumped-charge model for gate turn-off thyristors suitable for circuit simulation[J].Microelectronics Journal,1999,30(6):543-550.
    [56]BUDIHARDJO I,LAURITZEN P G.The lumped-charge power MOSFET model,including parameter extraction[J].IEEE Transactions on Power Electronics,1995,10(3):379-387.
    [57]MA C L,LAURITZEN P O,LIN P,et al.A systematic approach to modeling of power semiconductor devices based on charge control principles[C]∥25th Annual IEEE Power Electronics Specialists Conference.Taipei,China:IEEE,1994:31-38.
    [58]MA C L,LAURITZEN P O,SIGG J A.Physics-based GTO model for circuit simulation[C]∥26th Annual IEEE Power Electronics Specialists Conference.Atlanta,USA:IEEE,1995:872-879.
    [59]IANNUZZO F,BUSATTO G.Physical CAD model for high-voltage IGBTs based on lumped-charge approach[J].IEEE Transactions on Power Electronics,2004,19(4):885-893.
    [60]MA C L,LAURITZEN P O,SIGG J.Modeling of power diodes with the lumped-charge modeling technique[J].IEEE Transactions on Power Electronics,1997,12(3):398-405.
    [61]BRYANT A T,KANG X,SANTI E,et al.Two-step parameter extraction procedure with formal optimization for physics-based circuit simulator IGBT and P-I-N diode models[J].EEE Transactions on Power Electronics,2006,21(2):295-309.
    [62]姬世奇.高压IGBT串联特性建模及主动均压控制[D].北京:清华大学,2015.JI Shiqi.Modeling and active voltage balancing control for series-connected HV-IGBTs[D].Beijing,China:Tsinghua University,2015.
    [63]WU R,SMIRNOVA L,IANNUZZO F,et al.Investigation on the short-circuit behavior of an aged IGBT module through a 6 kA/1.1 kVnon-destructive testing equipment[C]∥IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society.Dallas,USA:IEEE,2014:3367-3373.
    [64]罗毅飞,汪波,刘宾礼,等.基于电压对电流变化率的IGBT结温变化机理及监测方法[J].高电压技术,2017,43(1):38-43.LUO Yifei,WANG Bo,LIU Binli,et al.Junction temperature varition mechanism and monitoring method of IGBTs based on derivative of voltage to current[J].High Voltage Engineering,2017,43(1):38-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700