用户名: 密码: 验证码:
薄层等离子体增强微波接收特性实验及数值仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and numerical studies on enhancement of microwave receiver characteristics by a thin plasma layer
  • 作者:孔繁荣 ; 李博文 ; 聂秋月 ; 王志斌 ; 张晓宁 ; 江滨浩
  • 英文作者:KONG Fan-rong;LI Bo-wen;NIE Qiu-yue;WANG Zhi-bin;ZHANG Xiao-ning;JIANG Bin-hao;School of Electrical Engineering and Automation,Harbin Institute of Technology;Electric Power Research Institute of State Grid Heilongjiang Electiric Power Company Limited;School of Science,Harbin Institute of Technology;
  • 关键词:薄层等离子体 ; 微波辐射接收增强 ; 增强控制规律
  • 英文关键词:thin layer plasma;;receiving enhancement on microwave radiation;;control law of enhancement
  • 中文刊名:DJKZ
  • 英文刊名:Electric Machines and Control
  • 机构:哈尔滨工业大学电气工程机及自动化学院;国网黑龙江省电力有限公司电力科学研究院;哈尔滨工业大学理学院;
  • 出版日期:2019-04-15 09:55
  • 出版单位:电机与控制学报
  • 年:2019
  • 期:v.23;No.174
  • 基金:国家自然科学基金青年项目(11605035);国家自然科学基金青年项目(11405038);; 黑龙江省博士后基金(LBH-Z14081)
  • 语种:中文;
  • 页:DJKZ201904004
  • 页数:8
  • CN:04
  • ISSN:23-1408/TM
  • 分类号:24-31
摘要
等离子体是一种多模式、宽频谱电磁介质,可以与不同波段电磁波相互作用,实现对电磁信号的调制。报告了薄层等离子体增强微波信号接收特性实验研究的初步结果,并进行了数值仿真分析。在实验中发现了薄层等离子体结构对微波电磁信号的接收增强效果;且这种技术不仅可以在较宽频带内提高天线接收到电磁辐射的强度,同时也保持了良好的微波信号质量。进一步建立了相应物理模型并对实验结果进行了数值仿真分析研究。基于局域表面等离子体激元理论,分析了微波接收信号增强的机理,并初步得到了微波频率、薄层厚度、碰撞频率等参数对微波接收增强特性的调制规律。
        As a multimode and wideband electromagnetic medium,plasma is able to interact with electromagnetic waves signal in various spectra to modulate the electromagnetic signals. In this paper,experimental results of signal enhancement in microwave receivers by thin layer plasmas were reported and numerically simulated. It is found that the thin layer plasma structure can intensify the receiving gain of microwave electromagnetic signals. Not only can this technology enhance the electromagnetic radiation in a wideband,but also maintain good signal quality. Based on local surface plasmon polarization theory,the corresponding physical model and numerical simulation were carried out to reveal the characteristics and mechanism of the process. The enhancement and modulation as well as their relation with microwave frequency,layer thickness,and collisional frequency in the plasma were further studied
引文
[1]DUERR W,MENZEL W,Schumacher H.A low-noise active receiving antenna using a Si Ge HBT[J].IEEE Microwave&Guided Wave Letters,1997,7(3):63.
    [2]PRINSLOO D S,MAASKANT R,IVASHINA M V,et al.Mixedmode sensitivity analysis of a combined differential and common mode active receiving antenna providing near-hemispherical fieldof-view coverage[J].IEEE Transactions on Antennas&Propagation,2014,62(8):3951.
    [3]PATTERSON C E,KHAN W T,PONCHAK G E,et al.A 60-GHz active receiving switched-beam antenna array with integrated butler matrix and Ga As amplifiers[J].IEEE Transactions on Microwave Theory&Techniques,2012,60(11):3599.
    [4]HUBER S,YOURIS M,KRIEGER G,et al.A reflector antenna concept robust against feed failures for satellite communications[J].IEEE Transactions on Antennas&Propagation,2015,63(4):1218.
    [5]BRAUNER T,VOGT R,BACHTOLD W.A differential active patch antenna element for array applications[J].IEEE Microwave and Wireless Components Letters,2003,13(4):161.
    [6]ENOCH S,TAYEB G,SABOUROUX P,et al.A metamaterial for directive emission[J].Physical Review Letters,2002,89(21):213902.
    [7]WU Q,PAN P,MENG F Y,et al.A novel flat lens horn antenna designed based on zero refraction principle of metamaterials[J].Applied Physics A,2007,87(2):151.
    [8]TURPIN J P,WU Q,WERNER D H,et al.Low cost and broadband dual-polarization metamaterial lens for directivity enhancement[J].IEEE Transactions on Antennas&Propagation,2012,60(12):5717.
    [9]MESSIAEN A M,VANDENPLAS P E.Theory and experiments of the enhanced radiation from a plasma-coated antenna[J].Electronics Letters,2007,3(1):26.
    [10]CHEN K M,LON C C.Enhanced radiation from a plasma-imbedded antenna[J].Proceedings of the IEEE,1968,56(9):1595.
    [11]LIN C C,CHEN K M.Improved radiation from a spherical antenna by overdose plasma coating[J].IEEE Transactions on Antennas&Propagation,1969,17(5):675.
    [12]LIN C C,CHEN K M.Radiation from a spherical antenna covered by a layer of lossy hot plasma.Theory and experiment[J].Proceedings of the Institution of Electrical Engineers,1971,118(1):36.
    [13]ERENTOK A,ZIOLKOWSKI R W.Metamaterial inspired efficient electrically small antennas[J].IEEE Transactions on Antennas Propag,2008,56(3):691.
    [14]ZIOLKOWSKI R W,KIPPLE A D.Application of double negative materials to increase the power radiated by electrically small antennas[J].IEEE Transactions On Antennas And Propagation,2003,51(10):2626.
    [15]ZIOLKOWSKI R W.Metamaterial-based source and scattering enhancements:From microwave to optical frequencies[J].OptoElectronics Review,2006,14(3):167.
    [16]WANG Chunsheng,LIU Hui,LI Xueai,et al.The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field[J].Physics of Plasmas,2015,22(6):1223.
    [17]WANG Chunsheng,LI Xueai,JIANG Binhao.The enhancement mechanism of thin plasma layer on antenna radiation[J].Applied Physics Letters,2015,106(10):1223.
    [18]KONG Fanrong,SUN Yufei,LIN Shu,et al.Experimental studies on radiation intensification in gigahertz radio frequency band by subwavelength plasma structures[J].IEEE Transactions on Plasma Science,2017,45(3):381.
    [19]KONG Fanrong,NIE Qiuyue,LIN Shu,et al.Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J].Plasma Science and Technology,2018,20(1):014017.
    [20]KONG Fanrong,CHEN Peiqi,NIE Qiuyue,et al.Research on radiation characteristics of dipole antenna modulation by subwavelength inhomogeneous plasma layer[J].Aip Advances,2018,8(2):025014.
    [21]KELLY K L,CORONADO E,LIN L Z,et al.The optical properties of metal nanoparticles:the influence of size,shape,and dielectric environment[J].Cheminform,2003,34(16):668
    [22]WILLETS K A,DUYNE R P V.Localized surface plasmon resonance spectroscopy and sensing[J].Annual Review of Physical Chemistry,2007,58(1):267-297.
    [23]CHANG-HASNAIN C J,HARBISON J P,HASNAIN G,et al.Dynamic,polarization,and transverse mode characteristics of vertical cavity surface emitting lasers[J].Journal of Quantum E-lectronics IEEE,1991,27(6):1402-1409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700