用户名: 密码: 验证码:
悬索桥太阳辐射效应的环境因素影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Change characteristics of environmental factors on suspension bridge’s solar radiation effects
  • 作者:朱劲松 ; 陈科旭 ; 孟庆领
  • 英文作者:ZHU Jinsong;CHEN Kexu;MENG Qingling;School of Civil Engineering, Tianjin University;Key Laboratory of Coast Civil Structure Safety (Tianjin University), Ministry of Education;
  • 关键词:悬索桥 ; 环境因素 ; 太阳辐射 ; 温度效应 ; 最不利活载
  • 英文关键词:suspension bridge;;environmental factors;;solar radiation;;temperature effects;;most unfavorable live load
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:天津大学建筑工程学院;滨海土木工程结构与安全教育部重点实验室(天津大学);
  • 出版日期:2019-03-11 10:53
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:天津市科技支撑计划重点项目(16YFZCSF00460);; 天津市自然科学基金(16JCZDJC40300)
  • 语种:中文;
  • 页:HEBX201903019
  • 页数:8
  • CN:03
  • ISSN:23-1235/T
  • 分类号:133-140
摘要
为研究自然环境下悬索桥太阳辐射效应变化规律以及最不利活载效应与环境温度效应的关系,首先建立了某在建大跨度悬索桥精细化模型,然后对太阳辐射效应的环境因素进行参数敏感性分析,同时研究了太阳辐射效应与最不利活载效应的关系.研究结果表明:悬索桥太阳辐射效应受环境温度影响最大、风速次之.风速对悬索桥太阳辐射效应的影响呈非线性关系;日序数和纬度对太阳辐射效应影响较小,但太阳辐射效应变化规律与纬度变化规律不一致,受多种环境因素影响.最不利活载引起的主梁跨中点挠度数值上是热辐射引起最大挠度的2倍,塔顶偏位数值上与热辐射引起的偏位相等.研究结果可以为悬索桥施工阶段误差分析和健康监测数据的温度影响剔除提供理论依据和技术支撑.
        This research focuses on the change rules of solar radiation effects and the relationship between most unfavorable live load effect and temperature effect of suspension bridges under natural environment. The fine model of an under-construction long-span suspension bridge was established, the parameter sensitivity analysis of environmental factors of solar radiation effects was carried out, and the relationship between the solar radiation effects and the most unfavorable live load effect was investigated. Results showed that the solar radiation effects of suspension bridge were mainly affected by ambient temperature, followed by the wind speed, the influence of which is nonlinear. Daily ordinal number and latitude had little influence on the solar radiation effects. The change of solar radiation effects was not consistent with that of latitude, but was affected by many environmental factors. The maximum deflection of the main beam caused by the most unfavorable live load was twice the maximum deflection caused by thermal radiation, and the offset of the tower top was equal to that of thermal radiation. These results could provide theoretical basis and technical support for the error analysis of the construction phase of suspension bridges and eliminate the temperature influence of the health monitoring data.
引文
[1] WESTGATE R, KOO K Y, BROWNJOIN J. Effect of solar radiation on suspension bridge performance[J]. Journal of Bridge Engineering, 2015, 20(5): 1
    [2]WESTGATE R, KOO K Y, BROWNJOIN J. Environmental effects on a suspension bridge’s dynamic response[C]// Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011. Leuven: European Association for Structural Dynamics, 2011: 1208
    [3]XIA Yong, CHEN Bo, LIN You. Temperature monitoring of Tsing Ma Suspension Bridge: numerical simulation and field measurement[J]. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, 2010, 2535
    [4]XIA Yong, CHEN Bo, ZHOU Xiaoqing. Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior[J]. Structure Control Health Monitoring, 2013, 20: 560
    [5]XU Youlin, CHEN Bo, NG C L,et al. Monitoring temperature effect on a long suspension bridge[J]. Structural Control and Health Monitoring, 2010, 17: 632
    [6]ZHOU Liren, XIA Yong, BROWNJOIN J, et al. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J]. Journal of Bridge Engineering, 2016, 21(1): 1
    [7]DING Youliang, LI Aiqun. Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge[J]. International Journal of Steel Structures, 2004, 11(2):145
    [8]MARTINS L L, RIBEIRO A S, NUNES J M, et al. Thermal influence on long-distance optical measurement of suspension bridge displacement[J]. International Journal of Thermophysics, 2014,35(3/4): 693
    [9]SONG Xuming, MELHEM H, LI Jun, et al. Effects of solar temperature gradient on long-span concrete box girder during cantilever construction[J]. Journal of Bridge Engineering, 2016, 21(3): 1
    [10]王达,张永健,刘扬,等. 基于健康监测的钢桁加劲梁钢-混组合桥面系竖向温度梯度效应分析[J]. 中国公路学报, 2015, 28(11): 29 WANG Da, ZHANG Yongjian, LIU Yang, et al. Vertical temperature gradient effect analysis of steel-concrete composite deck system on steel truss stiffening girder with health monitoring[J]. China Journal of Highway and Transport, 2015, 28(11): 29
    [11]CAO Yinghong, YIM J, ZHAO Yang, et al. Temperature effects on cable stayed bridge using health monitoring system: a case study[J]. Structural Health Monitoring, 2010, 5(10): 523
    [12]殷永高, 郭佳. 多塔连跨悬索桥非漂移体系温度效应研究[J]. 公路交通科技,2016(2):175 YIN Yonggao, GUO Jia. Research on temperature effects of multi-pylon non-drift system suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2016(2): 175
    [13]邓扬,李爱群,丁幼亮. 大跨悬索桥梁端位移与温度的相关性研究及其应用[J]. 公路交通科技,2009,26(5): 54 DENG Yang, LI Aiqun, DING Youliang. Research and application of correlation between beam end displacement and temperature of long-span suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 54
    [14]孙君,李爱群,丁幼亮,等. 润扬大桥悬索桥模态频率-温度的季节相关性研究及其应用[J]. 工程力学, 2009,26(9): 50 SUN Jun, LI Aiqun, DING Youliang, et al. Research on correlation of modal frequency and seasonal temperature of Runyang Suspension Bridge[J]. Engineering Mechanics, 2009, 26(9): 50
    [15]XIA Yong, XU Youlin, WEI Zelong, et al. Variation of structural vibration characteristics versus non-uniform temperature distribution[J]. Engineering Structures, 2011, 33(1): 146
    [16]MINHOTO M J C, PARIS J C, PEREIRA P A, et al. Predicting asphalt pavement temperature with a three-dimensional finite element method[J]. Journal of the Transportation Research Board, 2005, 1919(1):96
    [17]ZHU Jinsong, MENG Qingling. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(6): 1
    [18]吴咏双. 日照条件下公路箱形组合梁桥温度场与温度应力分析[D]. 成都:西南交通大学,2015 WU Yongshuang. Analysis of temperature field and thermal stress of highway box composite bridge under solar condition[D]. Chengdu: Southwest Jiaotong University, 2015
    [19]张伟. 基于日照辐射的悬索桥主缆热应力理论及结构温度效应研究[D]. 重庆:重庆大学,2015 ZHANG Wei. Study on thermal stress theory and structure temperature effect of main cable of suspension bridge based on solar radiation[D]. Chongqing: Chongqing University, 2015
    [20]上海市政工程设计研究总院. 城市桥梁设计规范:CJJ 11—2011[S]. 北京:中国建筑工业出版社, 2011 Shanghai Municipal Engineering Design Institute. Code for design of the municipal bridge: CJJ 11—2011[S]. Beijing: China Construction Industry Press, 2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700