用户名: 密码: 验证码:
不同组成和结构LaMnO_3钙钛矿负载Au催化剂的CO氧化活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Catalytic Activity of Au Nanoparticles Supported on LaMnO_3 Perovskite with Different Composition and Structure
  • 作者:何成欢 ; 郭杨龙 ; 郭耘 ; 王筠松 ; 王丽 ; 詹望成
  • 英文作者:HE Chenghuan;GUO Yanglong;GUO Yun;WANG Yunsong;WANG Li;ZHAN Wangcheng;Research Institute of Industrial Catalysis, East China University of Science and Technology;
  • 关键词:钙钛矿 ; 表面结构 ; Au纳米颗粒 ; CO氧化 ; 酸刻蚀
  • 英文关键词:Perovskite;;Surface structure;;Au nanoparticle;;CO oxidation;;Acid etching
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:华东理工大学工业催化研究所;
  • 出版日期:2019-04-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(21571061);; 国家重点研发计划(2016yfc0204300)资助项目~~
  • 语种:中文;
  • 页:WLHX201904015
  • 页数:9
  • CN:04
  • ISSN:11-1892/O6
  • 分类号:83-91
摘要
采用乙二醇溶胶-凝胶法制备了计量比LaMnO_3和非计量比LaMn_(1.2)O_3钙钛矿,并利用稀硝酸处理LaMnO_3制备得到LaMnO_3-AE,然后采用沉积沉淀法制备钙钛矿负载Au催化剂,以考察载体的结构和性质对Au的热稳定性以及催化剂活性的影响。通过X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)和H_2程序升温还原(H_2-TPR)等表征,发现LaMnO_3和LaMn_(1.2)O_3钙钛矿载体虽然有利于Au的分散,但是Au的热稳定性相对较差。相反,经稀硝酸刻蚀的LaMnO_3钙钛矿(LaMnO_3-AE)不利于Au的分散,但是有利于提高Au的热稳定性。在CO氧化反应中,当催化剂在低于500°C焙烧时,LaMn_(1.2)O_3钙钛矿负载Au催化剂的活性要显著高于LaMnO_3和LaMnO_3-AE负载Au催化剂的活性,而当催化剂焙烧温度升高至700°C以上时,LaMnO_3-AE负载Au催化剂却要显著优于LaMnO_3和LaMn_(1.2)O_3钙钛矿负载Au催化剂的活性。
        Perovskite is widely used as catalyst supports because of its flexible composition, good redox performance, and excellent thermal stability. However, the use of perovskite oxides as catalyst supports has two disadvantages: low surface area due to synthesizing the perovskite structure at high temperatures, and native perovskite surfaces preferentially have A-sites instead of catalytically active sites. On the other hand, interaction between the support and metal affects the size and valence state of noble metals. Therefore, perovskite oxides with different structures were prepared and were used to support Au catalysts, in order to obtain excellent catalytic activity and high stability. Specifically, stoichiometric LaMnO_3 and nonstoichiometric LaMn_(1.2)O_3 perovskites were prepared by the ethylene glycol sol-gel method, and then the LaMnO_3-AE oxide was prepared by treating LaMnO_3 perovskite with dilute nitric acid. The perovskite-supported Au catalyst was prepared by the deposition precipitation method and its catalytic activity for CO oxidation was evaluated. Using X-ray diffraction(XRD), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), and H_2 temperatureprogrammed reduction(H_2-TPR), it was found that LaMnO_3 and LaMn_(1.2)O_3 perovskite carriers were beneficial for the dispersion of Au; however, the Au nanoparticle size significantly increased with increasing calcination temperature, indicating poor Au thermal stability. In contrast, LaMnO_3 perovskite(LaMnO_3-AE) etched by nitric acid is not conducive to dispersion of Au, but it is beneficial for improving the thermal stability of Au. Au was always maintained in the zero-valence state after calcination at different temperature. H_2-TPR results revealed that the reducibility of the catalysts changed largely after thermal treatment at high temperatures, and was mainly influenced by the agglomeration of Au nanoparticles. Although the reducibility of the Au/LaMnO_3-AE catalyst calcined at 250 °C is lower than that of Au/LaMn_(1.2)O_3 and Au/LaMnO_3 catalysts calcined at the same temperature, the former exhibited higher reducibility when the catalyst was calcined at high temperatures(500 and 900 °C). In the CO oxidation reaction, the catalytic activity of all the prepared catalysts decreased when the calcination temperature was increased from 250 to 500, 700, and 900 °C. However, the catalytic activity of the Au/LaMn_(1.2)O_3 catalyst was significantly higher than those of LaMnO_3-and LaMnO_3-AE-supported Au catalyst, when calcination temperature was below 500 °C, while the activity of the Au/LaMnO_3-AE catalyst was significantly higher than those of the Au/LaMnO_3 and Au/LaMn_(1.2)O_3 catalysts when the calcination temperature was more than 700 °C. As shown in characterization results, after the catalyst was calcined at high temperatures(700 and 900 °C), the Au nanoparticle size on the Au/LaMnO_3-AE catalyst was lower than those on Au/LaMnO_3 and Au/LaMn_(1.2)O_3 catalysts, leading to high reducibility and catalytic activity of the Au/LaMnO_3-AE catalyst. The Au/LaMnO_3-AE catalyst also exhibited high stability in CO oxidation. The catalytic activity of the Au/LaMnO_3-AE catalyst can be maintained for 20 h at 130 °C.
引文
(1)Zhan,W.C.;Zhou,G.J.;Chu,G.H.;Shen,K.;Yu,J.;Wang,A.Y.;Su,N.;Lu,G.Z.;Guo,Y.L.Acta Phys.-Chim.Sin.2011,27(3),705.[詹望成,周国俊,储国海,沈凯,俞俊,王爱勇,苏娜,卢冠忠,郭杨龙.物理化学学报,2011,27(3),705.]doi:10.3866/PKU.WHXB20110311
    (2)Hu,Z.;Liu,X.F.;Meng,D.M.;Guo,Y.;Guo,Y.L.;Lu,G.Z.ACSCatal.2016,6(4),2265.doi:10.1021/acscatal.5b02617
    (3)Lu,H.F.;Zhang,P.F.;Qiao,Z.A.;Zhang,J.S.;Zhu,H.Y.;Chen,J.H.;Chen,Y.F.;Dai,S.Chem.Commun.2015,51(27),5910.doi:10.1039/C5CC00534E
    (4)Zhan,W.C.;Wang,J.L.;Wang,H.F.;Zhang,J.S.;Liu,X.F.;Zhang,P.F.;Chi,M.F.;Guo,Y.L.;Guo,Y.;Lu,G.Z.;et al.J.Am.Chem.Soc.2017,139(26),8846.doi:10.1021/jacs.7b01784
    (5)Zhan,W.C.;He,Q.;Liu,X.F.;Guo,Y.L.;Wang,Y.Q.;Wang,L.;Guo,Y.;Borisevich,A.Y.;Zhang,J.S.;Lu,G.Z.;Dai,S.J.Am.Chem.Soc.2016,138(49),16130.doi:10.1021/jacs.6b10472
    (6)Zhan,W.C.;Shu,Y.;Sheng,Y.J.;Zhu,H.Y.;Guo,Y.L.;Wang,L.;Guo,Y.;Zhang,J.S.;Lu,G.Z.;Dai,S.Angew Chem.Int.Ed.2017,56(16),4494.doi:10.1002/anie.201701191
    (7)Zhan,W.C.;Yang,S.Z.;Zhang,P.F.;Guo,Y.L.;Liu,G.Z.;Chisholm,M.F.;Dai,S.Chem.Mater.2017,29(17),7323.doi:10.1021/acs.chemmater.7b02206
    (8)van Spronsen,M.A.;Frenken,J.W.M.;Groot,I.M.N.Chem.Soc.Rev.2017,46(14),4347.doi:10.1039/c7cs00045f
    (9)Lin,J.;Wang,X.D.;Zhang,T.Chin.J.Catal.2016,37(11),1805.doi:10.1016/S1872-2067(16)62513-5
    (10)Min,B.K.M.;Friend,C.M.Chem.Rev.2007,107,2709.doi:10.1021/cr050954d
    (11)Gluhoi,A.C.;Bakker,J.W.;Nieuwenhuys,B.E.Catal Today 2010,154(1-2),13.doi:10.1016/j.cattod.2010.02.021
    (12)Moreau,F.;Bond,G.C.;van der Linden,B.Appl.Catal.A-Gen.2008,347(2),208.doi:10.1016/j.apcata.2008.06.019
    (13)Penkova,A.;Chakarova,K.;Laguna,O.H.;Hadjiivanov,K.;Saria,F.R.Catal.Commun.2009,10(8),1196.doi:10.1016/j.catcom.2009.01.014
    (14)Wu,H.C.;Liu,L.C.;Yang,S.M.Appl.Catal.A-Gen.2001,211,159.doi:10.1016/S0926-860X(00)00869-3
    (15)Tang,H.;Wei,J.;Liu,F.;Qiao,B.;Pan,X.;Li,L.;Liu,J.;Wang,J.;Zhang,T.J.Am.Chem.Soc.2016,138(1),56.doi:10.1021/jacs.5b11306
    (16)Liu,X.;Liu,M.-H.;Luo,Y.-C.;Mou,C.-Y.;Lin,S.D.;Cheng,H.;Chen,J.-M.;Lee,J.-F.;Lin,T.-S.J.Am.Chem.Soc.2012,134(24),10251.doi:10.1021/ja3033235
    (17)Tian,C.;Zhu,X.;Abney,C.W.;Liu,X.;Foo,G.S.;Wu,Z.;Li,M.;Meyer,H.M.;Brown,S.;Mahurin,S.M.;et al.ACS Catal.2017,7(5),3388.doi:10.1021/acscatal.7b00483
    (18)Wang,Y.;Arandiyan,H.;Scott,J.;Akia,M.;Dai,H.;Deng,J.;Aguey-Zinsou,K.-F.;Amal,R.ACS Catal.2016,6(10),6935.doi:10.1021/acscatal.6b01685
    (19)Niu,J.;Deng,J.;Liu,W.;Zhang,L.;Wang,G.;Dai,H.;He,H.;Zi,X.Catal Today 2007,126(3-4),420.doi:10.1016/j.cattod.2007.06.027
    (20)Zhu,J.;Li,H.;Zhong,L.;Xiao,P.;Xu,X.;Yang,X.;Zhao,Z.;Li,J.ACS Catal.2014,4(9),2917.doi:10.1021/cs500606g
    (21)Zhang,Y.;Wang,D.;Wang,J.;Chen,Q.;Zhang,Z.;Pan,X.;Miao,Z.;Zhang,B.;Wu,Z.;Yang,X.Chin.J.Catal.2012,33(9-10),1448.doi:10.1016/S1872-2067(11)60439-7
    (22)Huang,H.;Sun,Z.;Lu,H.;Shen,L.;Chen,Y.React.Kinet Mech.Cat.2010,101(2),417.doi:10.1007/s11144-010-0235-6
    (23)Zhu,J.;Zhao,Y.;Tang,D.;Zhao,Z.;Sonia,A.C.J.Catal.2016,340,41.doi:10.1016/j.jcat.2016.04.013
    (24)Hu,R.S.;Shen,Y.N.;Wang,H.Y.;Sun,Y.A.;Bai,Y.S.Acta Phys.-Chim.Sin.1993,9(3),382.[胡瑞生,沈岳年,王红宇,孙永安,白玉山.物理化学学报,1993,9(3),382.]doi:10.3866/PKU.WHXB19930317
    (25)Weng,D.;Ding,H.M.;Wu,X.D.;Xu,L.H.;Chen,Z.Acta Phys.-Chim.Sin.2001,17(3),248.[翁端,丁红梅,吴晓东,徐鲁华,陈震.物理化学学报,2001,17(3),248.]doi:10.3866/PKU.WHXB20010313
    (26)Christopher,B.;Rao,A.;Okram,G.S.;Petwal,V.C.;Dwivedi,V.P.V.J.J.Alloy.Compd.2017,703,216.doi:10.1016/j.jallcom.2017.01.229
    (27)Liu,F.X.;Jia,M.L.;Zhaori,G.T.;Guo,J.L.J.Inner Mongolia Normal Univ.2012,41(1),81.[刘凤祥,贾美林,照日格图,郭金玲.内蒙古师范大学学报,2012,41(1),81.]
    (28)Jia,M.L.;Li,X.;Zhaori,G.T.Shen,Y.N.;Li,Y.X.J.Rare Earth2011,29(3),213.doi:10.1016/S1002-0721(10)60433-4
    (29)Yang,X.G.;Liu,S.T.;Ye,X.K.;Wu,Y.;Sheng,S.S.;Xiong,G.G.Acta Phys.-Chim.Sin.1995,11(8),681.[杨向光,刘设田,叶兴凯,吴越,盛世善,熊国光.物理化学学报,1995,11(8),681.]doi:10.3866/PKU.WHXB19950803
    (30)Fu,Y.;Guo,Y.;Guo,Y.;Wang,Y.;Wang,L.;Zhan,W.;Lu,G.Catal.Sci.Technol.2017,7,4136.doi:10.1039/c7cy00912g
    (31)Huang,K.;Chu,X.;Yuan,L.;Feng,W.;Wu,X.;Wang,X.;Feng,S.Chem Commun.2014,50(65),9200.doi:10.1039/c4cc00023d
    (32)Shen,Y.N.;Hu,R.;S.;Xue,P.J.Inner Mongolia Normal Univ.1996,27(2),203.[沈岳年,胡瑞生,薛屏.内蒙古大学学报,1996,27(2),203.]
    (33)Meng,D.;Zhan,W.;Guo,Y.;Guo,Y.;Wang,Y.;Wang,L.J.Mol.Catal.A-Chem.2016,420,272.doi:10.1016/j.molcata.2016.04.028
    (34)Meng,D.;Zhan,W.;Guo,Y.;Guo,Y.;Wang,L.;Lu,G.ACS Catal.2015,5,5973.doi:10.1021/acscatal.5b00747
    (35)Hu,Z.;Qiu,S.;You,Y.;Guo,Y.;Guo,Y.;Wang,L.;Zhan,W.;Lu,G.Appl.Catal.B-Environ.2018,225,110.doi:10.1016/j.apcatb.2017.08.068
    (36)Chang,F.W.;Yu,L.Appl.Catal.A-Gen.2006,302,157.doi:10.1016/j.apcata.2005.12.028
    (37)Qiao,B.;Deng.Y.Appl.Catal.B-Environ.2006,66,241.doi:10.1016/j.apcatb.2006.04.004
    (38)Jia,M.L.;Hu,R.S.;Shen,Y.N.Inner Mongolia Petrochem.Ind.2003,30,18.[贾美林,胡瑞生,沈岳年.内蒙古石油化工,2003,30,18.]doi:10.3969/j.issn.1006-7981.2004.01.006
    (39)Wang,L.;Xie,H.;Wang,X.;Zhang,G.;Guo,Y.;Guo,Y.Chin.J.Catal.2017,38,1406.doi:10.1016/S1872-2067(17)62863-8
    (40)Ming,C.B.;Ye,D.Q.;Liu,Y.L.;Yang,L.Environ.Sci.2008,29(3),576.[明彩兵,叶代启,刘艳丽,杨力.环境科学,2008,29(3),576.]doi:10.13227/j.hjkx.2008.03.002
    (41)Meng,D.;Xu,Q.;Jiao,Y.;Guo,Y.;Gao,Y.;Wang,L.;Lu,G.Appl.Catal.B-Environ.2018,221,652.doi:10.1016/j.apcatb.2017.09.034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700