用户名: 密码: 验证码:
SF/SA/HBG纤维支架材料的构建及体外生物矿化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of SF/SA/HBG fiber scaffold materials and in-vitro biomineralization
  • 作者:訾园兴 ; 刘涛 ; 陈颖睿 ; 任旭 ; 丁新波
  • 英文作者:ZI Yuanxing;LIU Tao;CHEN Yingrui;REN Xu;DING Xinbo;Silk Institute,College of Materials and Textiles,Zhejiang Sci-Tech University;Keyi College,Zhejiang Sci-Tech University;
  • 关键词:静电纺丝 ; 生物支架材料 ; 体外生物矿化 ; 生物活性
  • 英文关键词:electrospinning;;biological scaffold material;;in-vitro biomineralization;;biological activity
  • 中文刊名:ZJSG
  • 英文刊名:Journal of Zhejiang Sci-Tech University(Natural Sciences Edition)
  • 机构:浙江理工大学材料与纺织学院、丝绸学院;浙江理工大学科技与艺术学院;
  • 出版日期:2018-12-01 13:36
  • 出版单位:浙江理工大学学报(自然科学版)
  • 年:2019
  • 期:v.41
  • 基金:浙江省自然科学基金项目(LY16E020012);; 浙江理工大学科研启动基金项目(15012081-Y);浙江理工大学研究生创新基金项目(11110131201716);浙江理工大学科技与艺术学院面上项目(KY2017010)
  • 语种:中文;
  • 页:ZJSG201904002
  • 页数:6
  • CN:04
  • ISSN:33-1338/TS
  • 分类号:19-24
摘要
由静电纺丝技术纺制的纤维支架材料能够提供大的比表面积及较高的孔隙率。以甲酸为溶剂,丝素蛋白(Silk fibroin,SF)和海藻酸钠(Sodium alginate,SA)为基体材料,并加入中空生物活性玻璃(Hollow bioactive glass,HBG),复合成体外生物活性较好的生物支架材料;通过体外生物矿化可以加速羟基磷灰石(Hydroxyapatite,HAp)的沉积及生长。经过一系列测试分析,结果显示:通过静电纺丝制备出SF/SA/HBG纤维复合膜,其平均直径分布在200~300 nm;经过乙醇处理后,纤维表面发生溶胀,直径变粗,平均直径分布在230~380 nm;进行体外生物矿化后,在纤维表面形成HAp,SF/SA/HBG纤维复合支架材料具有良好的生物活性。
        The fiber scaffold material spun by electrospinning technology can provide large specific surface area and high porosity. In this paper, the biological scaffold material with good in-vitro biological activity was synthesized by using formic acid as the solvent, using silk fibroin(SF) and sodium alginate(SA) as matrix materials, and adding hollow bioactive glass(HBG). The deposition and growth of hydroxyapatite(HAp) could be accelerated through in-vitro biomineralization. After a series of tests and analysis, the results showed that the average diameter of the SF/SA/HBG fiber composite membrane prepared by electrospinning was between 200 nm and 300 nm. After ethanol treatment, the surface of the fiber swelled and the diameter became thick and the average diameter was distributed within is 230~380 nm. After in vitro biomineralization, hydroxyapatite was formed on the fiber surface, indicating that the SF/SA/HBG fiber composite scaffold material has good biological activity.
引文
[1] Jin H J,Park J,Valluzzi R,et al.Biomaterial films of bombyx m ori silk fibroin with poly (ethylene oxide)[J].Biomacromolecules,2004,5(3):711-717.
    [2] Hofmann S,Foo C T W P,Rossetti F,et al.Silk fibroin as an organic polymer for controlled drug delivery[J].Journal of Controlled Release,2006,111(1/2):219-227.
    [3] Kim U J,Park J,Kim H J,et al.Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin[J].Biomaterials,2005,26(15):2775-2785.
    [4] Inouye K,Kurokawa M,Nishikawa S,et al.Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells[J].Journal of Biochemical and Biophysical Methods,1998,37(3):159-164.
    [5] Yoshimoto H,Shin Y M,Terai H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J].Biomaterials,2003,24(12):2077-2082.
    [6] Kim H J,Kim U J,Kim H S,et al.Bone tissue engineering with premineralized silk scaffolds[J].Bone,2008,42(6):1226-1234.
    [7] Holzwarth J M,Ma P X.Biomimetic nanofibrous scaffolds for bone tissue engineering[J].Biomaterials,2011,32(36):9622-9629.
    [8] Zahedi P,Rezaeian I,Ranaei-Siadat S O,et al.A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J].Polymers for Advanced Technologies,2010,21(2):77-95.
    [9] Sahoo S,Toh S L,Goh J C H.A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells[J].Biomaterials,2010,31(11):2990-2998.
    [10] Jin H J,Chen J,Karageorgiou V,et al.Human bone marrow stromal cell responses on electrospun silk fibroin mats[J].Biomaterials,2004,25(6):1039-1047.
    [11] Li W J,Laurencin C T,Caterson E J,et al.Electrospun nanofibrous structure:A novel scaffold for tissue engineering[J].Journal of Biomedical Materials Research part A,2002,60(4):613-621.
    [12] Ming J,Bie S,Jiang Z,et al.Novel hydroxyapatite nanorods crystal growth in silk fibroin/sodium alginate nanofiber hydrogel[J].Materials Letters,2014,126:169-173.
    [13] Rahaman M N,Day D E,Bal B S,et al.Bioactive glass in tissue engineering[J].Acta Biomaterialia,2011,7(6):2355-2373.
    [14] Hench L L,Splinter R J,Allen W C,et al.Bonding mechanisms at the interface of ceramic prosthetic materials[J].Journal of Biomedical Materials Research Part A,1971,5(6):117-141.
    [15] Liu T,Li Z,Ding X,et al.Facile synthesis of hollow bioactive glass nanospheres with tunable size[J].Materials Letters,2017,190(3):99-102.
    [16] Ming J,Zuo B.A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers[J].Materials Chemistry & Physics,2012,137(1):421-427.
    [17] Ayutsede J,Gandhi M,Sukigara S,et al.Regeneration of Bombyx mori silk by electrospinning.Part 3:characterization of electrospun nonwoven mat[J].Polymer,2005,46(5):1625-1634.
    [18] 吴佳林,王曙东,张幼珠,等.有机醇处理对 PLA/丝素复合纳米纤维的影响[J].丝绸,2008,45(4):24-26.
    [19] Minoura N,Tsukada M,Nagura M.Physico-chemical properties of silk fibroin membrane as a biomaterial.[J].Biomaterials,1990,11(6):430-434.
    [20] Xu S,Lin K,Wang Z,et al.Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics[J].Biomaterials,2008,29(17):2588-2596.
    [21] Wu C,Zhang Y,Ke X,et al.Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification[J].Journal of Biomedical Materials Research part A,2010,95 (2):476-485.
    [22] Liu T,Li Z,Ding X,et al.Facile synthesis of hollow bioactive glass nanospheres with tunable size[J].Materials Letters,2017,190:99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700