用户名: 密码: 验证码:
光声光谱检测装置中光声池的数值计算及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer
  • 作者:程刚 ; 曹渊 ; 刘锟 ; 曹亚南 ; 陈家金 ; 高晓明
  • 英文作者:Cheng Gang;Cao Yuan;Liu Kun;Cao Ya-Nan;Chen Jia-Jin;Gao Xiao-Ming;Anhui University of Science and Technology, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines;Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:光学 ; 光声光谱 ; 光声池 ; 数值计算
  • 英文关键词:optics;;photoacoustic spectroscopy;;photoacoustic cell;;numerical calculation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室;中国科学院安徽光学精密机械研究所;中国科学技术大学;
  • 出版日期:2019-04-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2017YFC0209700);; 国家自然科学基金(批准号:41730103,41575030,41475023)资助的课题~~
  • 语种:中文;
  • 页:WLXB201907012
  • 页数:11
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:139-149
摘要
利用光声光谱技术进行痕量气体的检测具有独特的优势,光声池是系统装置中最为重要的核心部件,它决定着整机性能的优劣.以一圆柱形共振型光声池为研究对象,基于声学与吸收光谱学的基本理论,建立了光声池声场激发的数学模型;利用数值模拟方法对光声池空腔结构进行了声学模态仿真,获得了前8阶声学模态值以及声压可视化振型;在考虑热黏性声学损耗的作用下,对光声池进行了热-声耦合多物理场仿真计算;将仿真结果与解析计算和实验结果进行对比,明确了利用数值模拟方法来计算光声池有关指标的可靠性与可行性;针对光声池的优化问题,提出了一种将响应面代理模型与遗传算法相结合的优化算法,在将原光声池中的谐振腔两端形貌更改为喇叭口形的情况下,通过优化算法获得了以光声池品质因数Q及池常数C_(cell)为最大值寻优的Pareto最优解集;选取一组解进行考察,结果表明,代理模型预测值与数值模拟值指标最大误差仅为1.3%,优化后的新型光声池Q较之前增长了48.9%, C_(cell)增长了34.4%.研究方法可为光声光谱中光声池的优化设计提供参考借鉴.
        Photoacoustic spectroscopy(PAS) offers intrinsic attractive features in the detection of trace gases,including ultra-compact size and background-free absolute absorption measurement. The photoacoustic(PA)cell is a key component in the PAS system, which determines the performance of the PAS sensor. In this paper,a cylindrical resonant photoacoustic cell is taken as a research target. Based on the fundamental theory of acoustics and absorption spectrum, a mathematical model of acoustic field excitation in the PA cell is established. The acoustic resonance frequency, quality factor and cell constant of the PA cell are used as three key parameters to describe its performance. By employing advanced computer numerical calculation and finite element simulation technology, we establish a simulation model and impose the excitation load and boundary conditions on the model according to the actual working conditions. Then we calculate and simulate the acoustic modal of the PA cell, and the first eight acoustic modal values of the cavity and the visual vibration model of the acoustic pressure are obtained. With considering the acoustic loss, the thermo-acoustic coupling multi-physical field simulation of photoacoustic cell is carried out. Comparing with analytical calculation and experiment results, the reliability and feasibility of using numerical simulation method to calculate the relevant parameters of photoacoustic cell are demonstrated. In order to obtain a better structure of photoacoustic cell,an optimization algorithm combining response surface proxy model with multi-objective genetic algorithm is proposed. We try to change the shapes of both ends of the resonator in the original photoacoustic cell into the shape of the bell mouth. Take into account the case that the longitudinal acoustic normalization frequency of the PA cell is larger than 1000 Hz, Pareto optimal solution set with the maximum quality factor Q and cell constant Ccell of the PA cell is obtained. The results show that the maximum error between the predicted and simulated values of the proxy model of the PA cell Q and Ccell is only 1.3%. Comparing with the original PA cell, the Q factor and the Ccell of the optimized PA cell are increased by 48.9% and 34.4%, respectively. The performance of the optimized photoacoustic cell is obviously improved. The proposed algorithm of photoacoustic numerical simulation combined with multi-objective optimization design can provide helpful reference for designing the PA cell in PAS sensor development.
引文
[1]Webber M E,MacDonald T,Pushkarsky M B,Patel C K N,Zhao Y J,Marcillac N,Mitloehner F M 2005 Meas.Sci.Technol.16 1547
    [2]Sicilianid C M,Viciani S,Borri S,Patimisco P,Sampaolo A,Scamarcio G,Natale P D,D'Amato F,Spagnolo V 2014 Opt.Express 22 28222
    [3]Hussain A,Petersen W,Staley J,Hondebrink E,Steenbergen W 2016 Opt.Lett.41 1720
    [4]Yin X K,Dong L,Wu H P,Zheng H D,Ma W G,Zhang L,Yin W B,Xiao L T,Jia S T,Tittel F K 2017 Opt.Express 2532581
    [5]Thaler K M,Berger C,Leix C,Drewes J,Niessner R,Haisch C 2017 Anal Chem.89 3795
    [6]Kreuzer L B 1971 J.Appl.Phys.42 2934
    [7]Besson J P,Schilt S,Thévenaz L 2004 Spectrochim.Acta A:Mol.Biomol.Spectrosc.60 3449
    [8]Tavakoli M,Tavakolib A,Taheri M,Saghafifar H 2010 Opt.Laser Technol.42 828
    [9]Pernau H F,Schmitt K,Huber J 2007 Eurosensors 168 1325
    [10]Baumann B,Kost B,Wolff M,Knickrehm S 2007 Comsol.Conference Grenoble,France,2007 p1.
    [11]Chen W G,Liu B J,Hu J X,Zhou H Y,Li J 2011 J.Chongqing Univ.34 7(in Chinese)[陈伟根,刘冰洁,胡金星,周恒逸,李剑2011重庆大学学报34 7]
    [12]Zhou Y,Cao Y,Zhu G D,Liu K,Tan T,Wang L J,Gao XM 2018 Acta Phys.Sin.67 084201(in Chinese)[周彧,曹渊,朱公栋,刘锟,谈图,王利军,高晓明2018物理学报67 084201]
    [13]Liu K,Mei J X,Zhang W J,Chen W D,Gao X M 2017 Sens.Actuat.B:Cheml.251 632
    [14]Peng Y,Yu Q X 2009 Spectrosc.Spect.Anal.29 2030(in Chinese)[彭勇,于清旭2009光谱学与光谱分析29 2030]
    [15]Wu H P,Dong L,Zheng H D,Yu Y J,Ma W G,Zhang L,Yin W B,Xiao L T,Jia S T,Tittel F K 2017 Nat.Commun.8 15331
    [16]Ma Y F,He Y,Yu X,Yu G,Zhang J B,Sun R 2016 Acta Phys.Sin.65 060701(in Chinese)[马欲飞,何应,于欣,于光,张静波,孙锐2016物理学报65 060701]
    [17]Shi Q,Hu S M 1998 Chin.J.Chem.Phys.1 20(in Chinese)[史强,胡水明1998化学物理学报1 20]
    [18]Rosencwaig A(translated by Wang Y J,Zhang S Y,Lu Z G)1986 Photoacoustics and Photoacoustic Spectroscopy(Beijing:Science Press)p35(in Chinese)[罗森威格A.著(王耀俊,张淑仪,卢宗桂译)1986光声学和光声谱学(北京:科学出版社)第35页]
    [19]Zhou H,Hou W L,Wu M Q 2012 Chin.J.Const.Mach.10463(in Chinese)[周鋐,侯维玲,吴孟乔2012中国工程机械学报10 463]
    [20]Kost B,Baumann B,Germer M,Wolff M,Rosenkranz M2011 Appl.Phys.B 102 87
    [21]Hu J F,Xu G Y,Hao Y Z 2015 Opt.Precis Eng.23 1096(in Chinese)[胡俊峰,徐贵阳,郝亚洲2015光学精密工程23 1096]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700