用户名: 密码: 验证码:
Fe-15Mn-10Al-0.3C钢升温过程中κ-碳化物的析出行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precipitation Behavior of κ-carbide during Heating Process in Fe-15Mn-10Al-0. 3C Steel
  • 作者:倪呈军 ; 刘营凯 ; 王白冰 ; 祖武杰 ; 史文
  • 英文作者:NI Chengjun;LIU Yingkai;WANG Baibing;ZU Wujie;SHI Wen;School of Materials Science and Engineering,Shanghai University;
  • 关键词:轻质Fe-Mn-Al-C钢 ; κ-碳化物 ; 时效 ; 析出动力学
  • 英文关键词:lightweight Fe-Mn-Al-C steel;;κ-carbide;;aging;;precipitation kinetics
  • 中文刊名:SHJI
  • 英文刊名:Shanghai Metals
  • 机构:上海大学材料科学与工程学院;
  • 出版日期:2019-05-31
  • 出版单位:上海金属
  • 年:2019
  • 期:v.41;No.231
  • 基金:国家重点基础研究发展规划(973计划)(No.2010CB630800)
  • 语种:中文;
  • 页:SHJI201903004
  • 页数:7
  • CN:03
  • ISSN:31-1558/TF
  • 分类号:22-28
摘要
利用差示扫描量热分析法(DSC)研究了淬火态轻质Fe-15Mn-10Al-0. 3C(质量分数,%)钢在升温过程中κ-碳化物的析出行为。由DSC曲线可以发现,δ-铁素体中淬火时形成的DO3相,先转变为L1_2相,再转变为κ-碳化物。利用JMAK方法计算了δ-铁素体中κ-碳化物的析出动力学和奥氏体分解动力学。计算结果表明:DO3相向L1_2相转变的激活能为145. 25 kJ/mol,L1_2相向κ-碳化物转变的激活能为81. 18 k J/mol。此外,试验钢经600℃时效30 s后,δ-铁素体的硬度最高,此时δ-铁素体中κ-碳化物的相对体积分数约为20%。
        Precipitation behavior of κ-carbides in the quenched lightweight Fe-15 Mn-10 Al-0. 3 C( mass fraction,%) steel during heating process was studied by differential scanning calorimetric( DSC) techniques. It was found from the DSC measured curves that the DO3 phase formed in quenching in δ-ferrite firstly transformed into L1_2 phase and then into κ-carbide. The precipitation kinetics of κ-carbide in δ-ferrite and the austenite decomposition kinetics were calculated using the JMAK equation. The calculated results showed that the activation energy of DO3 phase transition into L1_2 phase and L1_2 phase transition into κ-carbide were 145. 25 kJ/mol and 81. 18 kJ/mol,respectively. Besides,the hardness of δ-ferrite was the highest in test steel after aging at 600 ℃for 30 s,and the relative volume fraction of κ-carbides in δ-ferrite was about 20%.
引文
[1]JACQUES P J.Transformation-induced plasticity for high strength formable steels[J].Current Opinion in Solid State&Materials Science,2004,8(3/4):259-265.
    [2]ZAEFFERER S,OHLERT J,BLECK W.A study of microstructure,transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J].Acta Materialia,2004,52(9):2765-2778.
    [3]TIMOKHINA I B,HODGSON P D,PERELOMA E V.Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels[J].Metallurgical&Materials Transactions A,2004,35(8):2331-2341.
    [4]RAABE D,SPRINGER H,GUTIERREZ-URRUTIA I,et al.Alloy design,combinatorial synthesis,and microstructureproperty relations for low-density Fe-Mn-Al-C austenitic steels[J].JOM,2014,66(9):1845-1856.
    [5]KIM Y G,PARK Y S,HAN J K.Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-Xalloys[J].Metallurgical Transactions A,1985,16(9):1689-1693.
    [6]JAHN M T,CHANG S C,HSIAO Y H.Transverse tensile and fatigue properties of Fe-Mn-Al-C alloys[J].Journal of Materials Science,1989,8(6):723-724.
    [7]KALASHNIKOV I S,ACSELRAD O,PEREIRA L C,et al.Behavior of Fe-Mn-Al-C steels during cyclic tests[J].Journal of Materials Engineering&Performance,2000,9(3):334-337.
    [8]JACKSON P R S,WALLWORK G R.High temperature oxidation of iron-manganese-aluminum based alloys[J].Oxidation of Metals,1984,21(3/4):135-170.
    [9]KAO C H,WAN C M.Effect of temperature on the oxidation of Fe-7.5A1-0.65C alloy[J].Journal of Materials Science,1988,23(6):1943-1947.
    [10]CHOI K,SEO C H,LEE H,et al.Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel[J].Scripta Materialia,2010,63(10):1028-1031.
    [11]GUTIERREZ-URRUTIA I,RAABE D.Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J].Scripta Materialia,2013,68(6):343-347.
    [12]GUTIERREZ-URRUTIA I,RAABE D.High strength and ductile low density austenitic Fe Mn Al C steels:Simplex and alloys strengthened by nanoscale ordered carbides[J].Materials Science&Technology,2013,30(9):1099-1104.
    [13]LIN C L,CHAO C G,JUANG J Y,et al.Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured Fe Mn Al C alloy[J].Journal of Alloys&Compounds,2014,586(4):616-620.
    [14]SEOL J B,RAABE D,CHOI P,et al.Direct evidence for the formation of ordered carbides in a ferrite-based low-density FeMn-Al-C alloy studied by transmission electron microscopy and atom probe tomography[J].Scripta Materialia,2013,68(6):348-353.
    [15]JEONG J,LEE C Y,PARK I J,et al.Isothermal precipitation behavior ofκ-carbide in the Fe-Mn-6Al-0.15C lightweight steel with a multiphase microstructure[J].Journal of Alloys&Compounds,2013,574:299-304.
    [16]RAHNAMA A,DASHWOOD R,SRIDHAR S.A phase-field method coupled with CALPHAD for the simulation of orderedκ-carbide precipitates in both disorderedγandαphases in low density steel[J].Computational Materials Science,2017,126:152-159.
    [17]LU W J,QIN R S.Influence ofκ-carbide interface structure on the formability of lightweight steels[J].Materials&Design,2016,104:211-216.
    [18]张巧霞,郭明星,胡晓倩,等.汽车板用Al-0.6Mg-0.9Si-0.2Cu合金时效析出动力学研究[J].金属学报,2013,49(12):1604-1610.
    [19]WELSCH E,PONGE D,HAGHIGHAT S M H,et al.Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J].Acta Materialia,2016,116:188-199.
    [20]KHACHATURYAN A G,VIEHLAND D.Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys:Part I.Decomposition and confined displacive transformation[J].Metallurgical&Materials Transactions A,2007,38(13):2308-2316.
    [21]CHENG W C,CHENG C Y,HSU C W,et al.Phase transformation of the L12phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel[J].Materials Science&Engineering A,2015,642:128-135.
    [22]CONNETABLE D,MAUGIS P.First principle calculations of theκ-Fe Al C perovskite and iron-aluminium intermetallics[J].Intermetallics,2008,16(3):345-352.
    [23]WANTANG F U,WANG Z,JING T,et al.A new approach to isothermal precipitation kinetics of carbides[J].Journal of Materials Science&Technology,1998,14(5):478-480.
    [24]冯晶,陈敬超,于杰,等.快速凝固法制备过饱和CuCr合金时效析出动力学[J].稀有金属材料与工程,2009,38(2):281-285.
    [25]刘林飞,周上祺,黄玉堂,等.C、N、O在α-Fe中扩散激活能的计算[J].材料导报,2008,22(8):120-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700