用户名: 密码: 验证码:
4种接地金属材料在土壤浸出液中的腐蚀行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Corrosion Behavior of Four Kinds of Metal Grounding Materials in Soil Leaching Solution
  • 作者:陈科锋 ; 张兆德 ; 胡家元 ; 钱洲亥 ; 周开河 ; 戚浩金 ; 方云辉 ; 蒲吉斌 ; 刘栓
  • 英文作者:CHEN Ke-feng;ZHANG Zhao-de;HU Jia-yuan;QIAN Zhou-hai;ZHOU Kai-he;QI Hao-jin;FANG Yun-hui;PU Ji-bin;LIU Shuan;School of Naval Architecture and Mechanical-Electrical Engineering,Zhejiang Ocean University;Key Laboratory of Marine Materials and Related Technologies-Zhejiang Key Laboratory of Marine Materials and Protective Technologies-Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences;Zhejiang Electric Power Corporation Research Institute;State Grid Ningbo Electric Power Supply Company;
  • 关键词:接地金属材料 ; 土壤浸出液 ; 耐腐蚀性 ; 点蚀 ; 电化学腐蚀
  • 英文关键词:metal grounding materials;;soil leaching solution;;corrosion resistance;;pitting corrosion;;electrochemical corrosion
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:浙江海洋大学船舶与机电工程学院;中国科学院海洋新材料与应用技术重点实验室浙江省海洋材料与防护技术重点实验室中国科学院宁波材料技术与工程研究所;国网浙江省电力公司电力科学研究院;国网浙江省电力公司宁波供电公司;
  • 出版日期:2018-12-15
  • 出版单位:材料保护
  • 年:2018
  • 期:v.51;No.479
  • 基金:国家自然科学基金(41506098);; 国网浙江省电力公司科学技术项目(5211DS16001N、5211NB16000F)资助
  • 语种:中文;
  • 页:CLBH201812003
  • 页数:7
  • CN:12
  • ISSN:42-1215/TB
  • 分类号:19-24+29
摘要
目前对接地金属材料在滨海海域土壤中的腐蚀行为鲜有研究报道。通过电化学测试技术研究了4种金属(Q235碳钢、304不锈钢、316L不锈钢和镀锌钢)在滨海海域土壤浸出液中的腐蚀行为,利用扫描电镜(SEM)和X射线衍射(XRD)技术对其表面腐蚀产物进行分析。结果表明:在相同浸泡时间内,4种金属的容抗弧半径均随浸泡时间延长先增大后减小,Q235碳钢的耐腐蚀性最差; Q235碳钢和镀锌钢以均匀腐蚀为主,304不锈钢及316L不锈钢表面发生点蚀; 4种金属的耐腐蚀程度为:316L不锈钢>304不锈钢>镀锌钢>Q235碳钢。
        The corrosion behaviors of four kinds of metal materials( carbon steel Q235,stainless steel 304,stainless steel 316 L and galvanized steel) in coastal soil leaching solution were studied by electrochemical measurement. The corrosion products on the material surface were analyzed by scanning electron microscopy( SEM) and X-ray powder diffractometer( XRD). Results indicated that the capacitive arc radius of these four kinds of metal materials increased firstly and then decreased with the extension of immersing time. Carbon steel Q235 exhibited the worst corrosion resistance. Moreover,the corrosion behaviors of carbon steel Q235 and galvanized steel were dominated by uniform corrosion,while pitting corrosion occurred on stainless steel 304 and 316 L. Besides,the order of corrosion resistance of these four kinds of metal materials was as follows: stainless steel 316 L > stainless steel 304 > galvanized steel > carbon steel Q235.
引文
[1]陈云,强春媚,王国刚,等.输电铁塔的腐蚀与防护[J].电力建设,2010,31(8):55-58.
    [2] LAMA H F,YIN T. Dynamic reduction-based structural damage detection of transmission towers:Practical issues and experimental verification[J]. Engineering Structures,2011,33(5):1 459-1 478.
    [3] AKKOUCHE R,REMAZEILLES C,JEANNIN M,et al.Influence of soil moisture on the corrosion processes of carbon steel in artificial soil:Active area and differential aeration cells[J]. Electrochimica Acta,2016,213:698-708.
    [4] YAN M,SUN C,DONG J,et al. Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corrosion Science,2015,97:62-73.
    [5]陈洪玉,刘兴,教立新.埋地煤气管道局部腐蚀原因分析[J].表面技术,2006,35(4):80-81.
    [6] WANG S R,DU C W,LI X G,et al. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil[J]. Progress in Natural Science:Materials International,2015,25(3):242-250.
    [7]郭超,李明,沈全锋,等.撒哈拉地区不锈钢输水设施点蚀原因分析[J].表面技术,2016,45(7):51-55.
    [8]安玥,宋义全,冯宇飞,等. X100管线钢在格尔木土壤模拟溶液中的腐蚀行为[J].内蒙古科技大学学报,2016,35(1):54-58.
    [9] LIU H W,FRANK Y. Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria[J]. Electrochimica Acta,2017,253:368-378.
    [10] HE B,HAN P J,HOU L F,et al. Understanding the effect of soil particle size on corrosion behavior of natural gas pipeline via modelling and corrosion micromorphology[J]. Engineering Failure Analysis,2017,80:325-340.
    [11] LIU Z Y,LI Q,CUI Z Y,et al. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments[J]. Construction&Building Materials,2017,148:131-139.
    [12]李谋成,林海潮,曹楚南.碳钢在土壤中腐蚀的电化学阻抗谱特征[J].中国腐蚀与防护学报,2000,20(2):111-117.
    [13]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:58.
    [14] LIU S,ZHAO X,ZHAO H C,et al. Corrosion performance of zinc coated steel in seawater environment[J]. Chinese Journal of Oceanology and Limnology,2017,35(2):423-430.
    [15] LIU S,SUN H Y,SUN L J,et al. Effects of p H and Clconcentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corrosion Science,2012,65:520-527.
    [16] DAVOODI A,PAKSHIR M,BABAIEE M,et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media[J]. Corrosion Science,2011,53(1):399-408.
    [17] GU L,LIU S,ZHAO H C,et al. Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings[J].ACS Applied Materials&Interfaces, 2015, 32(7):17 641-17 648.
    [18] LIU S,SUN H Y,ZHANG N,et al. The corrosion performance of galvanized steel in closed rusty seawater[J]. International Journal of Corrosion,2013(9):1-9.
    [19] REFAIT PH,MEMET J B,ON C B,et al. Formation of the Fe(II)-Fe(III)hydroxysulphate green rust during marine corrosion of steel[J]. Corrosion Science,2003,45:833-845.
    [20]黄毓晖. 304不锈钢氯离子腐蚀的力-化学行为研究[D].上海:华东理工大学,2011:30-33.
    [21]李远. 316L不锈钢在氯化钠溶液中的应力腐蚀研究[D].哈尔滨:哈尔滨工程大学,2011:21-26.
    [22]刘栓,赵霞,陈长伟,等.油田输油管线钢X65的腐蚀行为研究[J].中国腐蚀与防护学报,2015,35(5):393-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700