用户名: 密码: 验证码:
基于卫星图像的北极冰间水道形态学特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the Morphological Characteristics of Arctic Leads Based on Satellite Imageries
  • 作者:王玉 ; 马玉贤 ; 陈元 ; 陈伟斌
  • 英文作者:WANG Yu;MA Yu-xian;CHEN Yuan;CHEN Wei-bin;National Marine Environment Monitoring Center;
  • 关键词:卫星图像 ; 冰间水道形态学特征 ; 楚科奇海 ; 波弗特海
  • 英文关键词:satellite imagery;;morphological characteristics of leads;;Chukchi Sea;;Beaufort Sea
  • 中文刊名:HYJS
  • 英文刊名:Journal of Ocean Technology
  • 机构:国家海洋环境监测中心;
  • 出版日期:2019-04-15
  • 出版单位:海洋技术学报
  • 年:2019
  • 期:v.38
  • 基金:海洋公益性行业科研专项资助项目(201505019;201505005);; 国家海洋环境监测中心博士启动基金资助项目(2017-A-04)
  • 语种:中文;
  • 页:HYJS201902002
  • 页数:6
  • CN:02
  • ISSN:12-1435/P
  • 分类号:11-16
摘要
随着全球气候变暖,北极海冰面积逐渐减小,冰厚逐渐变薄,海冰在海浪的影响下会变得很脆弱,容易断裂形成裂缝,更易形成冰间水道,有助于北极航道的通航。同时,冰间水道是极地地区海洋与大气之间热量与动量交换的重要通道之一,因此在全球气候变暖的背景下,分析冰间水道的形态学特征,对于研究北极海区的动量和热量收支以及预测航道通航具有重要意义。文中利用Hilditch的冰间水道骨架技术,基于Landsat8的图像数据,分析了9月楚科奇海和波弗特海附近冰间水道倾角、长度和冰间水道距离等冰间水道的分布特征。结果表明,此时冰间水道倾角的分布集中在74°~114°之间,冰间水道长度和距离变化范围较大,分别在2~3 km和50~220 m之间。
        As global warming progresses, the Arctic sea ice area is gradually decreasing, with ice thickness becoming thiner. The more fragile sea ice influenced by the waves is conducive to the lead formation process which contributes to Arctic passage navigation. Moreover, the lead is one of the most important channels through which the air and the sea exchange heat and momentum. Therefore, the analysis on the morphological characteristics of the lead is significant for research of the momentum and heat balance in the Arctic and prediction of the navigation in the Arctic passage under the pretext of global warming. The distribution characteristics of the lead orientation, lead length and the lead spacing near the Chukchi and Beaufort Seas are analyzed in September based on Landsat8 imageries with the Hilditch Skeleton Method. The research results show that the distribution of the lead orientation is between 74° and 114°, but the length and spacing of the lead vary remarkably, ranging from 2 km to 3 km and from 50 m to 220 m, respectively. The lead length has more discrepancies among different images, compared with the spacing and the orientation.
引文
[1] Langhorne P J, Squire V A, Fox C, et al. Lifetime estimation for a land-fast ice sheet subjected to ocean swell[J]. Annals of Glaciology,2001, 33(1):333-338.
    [2] Br觟han D, Kaleschke L. A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E[J]. Remote Sensing,2014, 6(2):1451-1475.
    [3] Lüpkes C, Vihma T, Birnbaum G, et al. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night[J]. Geophysical Research Letters, 2008, 35(3):L03805.
    [4]贺书锋,平瑛,张伟华.北极航道对中国贸易潜力的影响——基于随机前沿引力模型的实证研究[J].国际贸易问题, 2013(8):3-12.He Shufeng, Ping Ying, Zhang Weihua. Influence of Arctic passage on China’s trade potential:An empirical research based on stochastic frontier gravity mode stochastic frontier gravity mode[J]. Journal of International Trade, 2013(8):3-12.
    [5]孙艺萌.北极航线对我国对外贸易潜力的影响研究[D].大连:大连海事大学, 2014.Sun Yimeng. Study on the influence of the potential of China's foreign trade by the Arctic route[D]. Dalian:Dalian Maritime University,2014.
    [6]何剑锋,吴荣荣,张芳,等.北极航道相关海域科学考察研究进展[J].极地研究, 2012, 24(2):187-196.He Jianfeng, Wu Rongrong, Zhang Fang, et al. The progress of expeditions and research in the seas related to the Arctic passages[J].Chinese Journal of Polar Research, 2012, 24(2):187-196.
    [7] Cressey D. Arctic melt opens northwest passage[J]. Nature, 2007, 449(7160):267.
    [8] Fily M, Rothrock D A. Opening and closing of sea ice leads——Digital measurements from synthetic aperture radar[J]. Journal of Geophysical Research Oceans, 1990, 95(C1):789-796.
    [9] Key J, R Stone, J Maslanik, et al. The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale[J]. Ann Glaciol, 1993, 17:227-232.
    [10] Stone R S, Key J R. The detectability of Arctic leads using thermal imagery under varying atmospheric conditions[J]. Journal of Geophysical Research Atmospheres, 1993, 98(C7):12469-12482.
    [11] Lindsay R W, Rothrock D A. Arctic sea ice leads from advanced very high resolution radiometer images[J]. Journal of Geophysical Research Oceans, 1995, 100(C3):4533-4544.
    [12] Tschudi M A, Curry J A, Maslanik J A. Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA[J]. Journal of Geophysical Research Oceans, 2002, 107(C10):SHE 9-1-SHE 9-14.
    [13] Tarabalka Y, Brucker L, Ivanoff A, et al. Shape-constrained segmentation approach for Arctic multiyear sea ice floe analysis[C]//Geoscience and Remote Sensing Symposium(IGARSS), 2012 IEEE International. IEEE, 2012:4958-4961.
    [14] Onana V, Kurtz N T, Farrell S L, et al. A sea-ice lead detection algorithm for use with high-resolution airborne visible imagery[J].Geoscience&Remote Sensing IEEE Transactions on, 2013, 51(1):38-56.
    [15] Naccache N J, Shinghal R. An investigation into the skeletonization approach of hilditch[J]. Pattern Recognition, 1984, 17(3):279-284.
    [16] Banfield J. Skeletal modeling of ice leads[J]. IEEE Transactions on Geoscience&Remote Sensing, 1992, 30(5):918-923.
    [17] Cunningham G F, Kwok R, Banfield J. Ice lead orientation characteristics in the winter Beaufort Sea[C]//International Geoscience&Remote Sensing Symposium, IEEE, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700