用户名: 密码: 验证码:
一种新的MDM2-p53信号通路抑制剂的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of a novel MDM2-p53 interaction inhibitor using virtual screening and docking strategy
  • 作者:涂潇 ; 李雷 ; 张海波 ; 刘扬 ; 肖智雄 ; 张渝君 ; 曹洋
  • 英文作者:TU Xiao;LI Lei;ZHANG Hai-Bo;LIU Yang;XIAO Zhi-Xiong;ZHANG Yu-Jun;CAO Yang;Center of Growth, Metabolism and Aging, Collage of Life Sciences, Sichuan University;
  • 关键词:靶向治疗 ; p53 ; MDM2 ; 虚拟筛选
  • 英文关键词:Targeted therapy;;p53;;MDM2;;Virtual screen
  • 中文刊名:SCDX
  • 英文刊名:Journal of Sichuan University(Natural Science Edition)
  • 机构:四川大学生命科学学院生长代谢衰老中心;
  • 出版日期:2019-03-25 16:13
  • 出版单位:四川大学学报(自然科学版)
  • 年:2019
  • 期:v.56
  • 基金:国家自然基金(31401130)
  • 语种:中文;
  • 页:SCDX201902032
  • 页数:8
  • CN:02
  • ISSN:51-1595/N
  • 分类号:187-194
摘要
本研究以研发新型小分子MDM2抑制剂为目的,建立了以分子对接为基础的虚拟筛选流程.利用虚拟筛选流程对SPECS化合物库的分子进行类药性筛选、分子对接粗筛、二次筛选以及排序挑选,并通过细胞实验验证这些分子激活p53并抑制肿瘤细胞生长的活性.结果表明M12能够激活p53及其下游信号通路,抑制肿瘤细胞周期并促进肿瘤细胞凋亡.M12与已知MDM2-p53抑制剂结构完全不同,是一种潜在的癌症治疗候选药物.
        In this study we employed a docking approach based on virtual screening to search for inhibitors that can bind to MDM2 and block MDM2-p53 interaction. Candidate compounds were obtained from SPECS library. We processed two rounds of molecular docking. Putative compounds were selected based on binding score ranking and 3 D structure inspection. Furthermore, the selected small molecules were validated by cell-based experiments. Treatment of several cancer cells with M12 led to activating p53, and upregulation of p21, leading to cell cycle arrest and apoptosis. To this end, we discovered a novel small molecule named M12 that is structurally different from the known MDM2 antagonists, M12 may be a novel small compound and a potentially useful drug candidate for cancer treatment.
引文
[1] Duffy M J, Synnott N C, McGoWan P M, et al. p53 as a target for the treatment of cancer [J]. Cancer Treat Rev, 2014, 40: 1153.
    [2] 谢一, 王阳, 肖智雄. 具有激活RB蛋白生物活性小肽的研究 [J]. 四川大学学报: 自然科学版, 2016, 53: 883.
    [3] Zhao Y J, Aguilar A, Bernard D, et al. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment [J]. J Med Chem, 2015, 58: 1038.
    [4] Nag S, Zhang X, Srivenugopal, et al. Targeting MDM2-p53 interaction for cancer therapy: are we there yet [J]. Curr Med Chem, 2014, 21: 553.
    [5] Zhang B, Golding B T, Hardcastle I R. Small-molecule MDM2-p53 inhibitors: recent advances [J]. Future Med Chem, 2015, 7: 631.
    [6] Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy [J]. Annu Rev Pharmacol Toxicol, 2009, 49: 223.
    [7] Van M T, Rihani A, Van G, et al. Pharmacologic activation of wild-type p53 by nutlin therapy in childhood cancer [J]. Cancer Lett, 2014, 344: 157.
    [8] Liu L, Bernard D, Wang S. Case study: discovery of inhibitors of the MDM2-p53 protein-protein interaction [J]. Methods Mol Biol, 2015.1278: 567.
    [9] Tazawa H, Kagawa S, Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy [J]. Expert Opin Biol Ther, 2013, 13: 1569.
    [10] Lukin D J, Carvajal L A, Liu W J, et al. p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints [J]. Mol Cancer Res, 2015, 13: 16.
    [11] Speidel D. The role of DNA damage responses in p53 biology [J]. Arch Toxicol, 2015, 89:501.
    [12] Rufini A, Tucci P, Celardo I, et al. Senescence and aging: the critical roles of p53 [J]. Oncogene, 2013, 32: 5129.
    [13] Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism [J]. Cancer Lett, 2015, 56: 197.
    [14] Wade M, Li Y C, Wahl G M. MDM2, MDMX and p53 in oncogenesis and cancer therapy [J]. Nat Rev Cancer, 2013, 13: 83.
    [15] Pei D, Zhang Y, Zheng J. Regulation of p53: a collaboration between Mdm2 and Mdmx [J]. Oncotarget, 2012, 3: 228.
    [16] Mendoza M, Mandani G, and Momand J. The MDM2 gene family [J]. Biomol Concepts, 2014, 5: 9.
    [17] Meng X, Franklin D A, Dong J H, et al. MDM2-p53 pathway in hepatocellular carcinoma [J]. Cancer Res, 2014, 74: 7161.
    [18] Barone G, Tweddle D, Shohet J, et al. MDM2-p53 interaction in paediatric solid tumours: preclinical rationale, biomarkers and resistance [J]. Curr Drug Targets, 2014, 15: 114.
    [19] Ding Q, Zhang Z M, Liu J J, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development [J]. J Med Chem, 2013, 56: 5979.
    [20] Wang S, Wei S, Zhao Y J, et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression [J]. Cancer Res, 2014, 74: 5855.
    [21] Sun D, Li Z H, Rew Y, et al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development [J]. J Med Chem, 2014, 57: 1454.
    [22] Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy [J]. Clin Cancer Res, 2008, 14: 5318.
    [23] Koblish H K, Zhao S, Franks C F, et al. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo [J]. Mol Cancer Ther, 2006, 5: 160.
    [24] Lang P T, Brozell S R, Mukherjee S, et al. DOCK 6: combining techniques to model RNA-small molecule complexes [J]. RNA, 2009, 15: 1219.
    [25] Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading [J]. J Comput Chem, 2010, 31: 455.
    [26] Xiao Z X, Chen J, Levine A J, et al. Interaction between the retinoblastoma protein and the oncoproteinMDM2 [J]. Nature, 1995, 375: 694.
    [27] Du W, Wu J F, Walsh E M, et al. Nutlin-3 affects erxpression and function of retinoblastoma protein [J]. J Biol Chem, 2009, 284: 26315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700