用户名: 密码: 验证码:
HONO与CH_3·反应机理的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study on the mechanism of the reaction between HONO and CH_3·
  • 作者:孙婷婷 ; 黄菊 ; 徐彦红 ; 郑绵冬 ; 王德堂
  • 英文作者:SUN Ting-ting;HUANG Ju;XU Yan-hong;ZHENG Mian-dong;WANG De-tang;School of Chemical Engineering,Xuzhou College of Industrial Technology;School of Chemistry & Chemical Engineering,Xuzhou Institute of Technology;Jiangsu Province Engineering Technology Research and Development Center of New Chemical Materials,Xuzhou College of Industrial Technology;
  • 关键词:HONO ; CH3自由基 ; 大气反应 ; 密度泛函理论 ; CCSD ; 反应机理
  • 英文关键词:HONO;;CH3 radical;;atmospheric reaction;;DFT;;CCSD;;reaction mechanism
  • 中文刊名:FZKB
  • 英文刊名:Journal of Molecular Science
  • 机构:徐州工业职业技术学院化学工程学院;徐州工程学院化学化工学院;徐州工业职业技术学院江苏省化工新材料工程技术研发开发中心;
  • 出版日期:2019-04-15
  • 出版单位:分子科学学报
  • 年:2019
  • 期:v.35;No.166
  • 基金:江苏省自然科学基金资助项目(BK20161166)
  • 语种:中文;
  • 页:FZKB201902008
  • 页数:7
  • CN:02
  • ISSN:22-1262/O4
  • 分类号:56-62
摘要
采用密度泛函理论和耦合簇理论等方法研究了HONO与CH_3·的反应机理.在B3PW91/6-311G(d,p)方法下,优化了反应势能面上的反应物、中间体、过渡态和产物的几何构型;通过内禀反应坐标(IRC)确认了反应物、过渡态、中间体和产物之间的相关性.利用CCSD(T)/aug-cc-pVTZ方法计算了各驻点单点能量,并拟合计算了反应速率常数.计算结果表明,HONO与CH_3·的主要反应通道为cis-HONO+CH_3·→cis-IMA1→cis-TSA1→cisIMA2,其产物为NO_2和CH_4.
        The mechanism of reaction between HONO and CH_3·was investigated by the means of DFT and CCSD.The geometrical parameters of the reactants,transition states,intermediates and products were optimized at the B3 PW91/6-311 G(d,p)computational level.Based on the optimized geometries,the reactants,transition states,intermediates and products were detected by frequency analysis.The intrinsic reaction coordinates(IRC)were traced and connecting relationships between the reactants,intermediates,transition states and products were confirmed.The reliable single point energies of the species were computed by employing the CCSD(T)/aug-cc-pVTZ method,and the reaction rate constants were exponential fitted.The result shows that the dominant reaction channel is cisHONO+CH_3·→cis-IMA1→cis-TSA1→cis-IMA2,and the major products are NO_2 and CH_4.
引文
[1]安俊岭,李颖,汤宇佳,等.[J].中国环境科学,2014,34(2):273-281.
    [2]朱元强,李来才.[J].四川师范大学学报:自然科学版,2005,28(1):90-93.
    [3]何伟平,黄菊,刘郁,等.[J].分子科学学报,2016,32(6):467-474.
    [4]何伟平,黄菊,刘晓静,等.[J].分子科学学报,2017,33(3):196-202.
    [5]张吉东,王海锋,薛新英,等.[J].化学学报,2012,70(24):2543-2548.
    [6]张蕾,孙锐,杨振,等.[J].燃烧科学与技术,2017,23(2):161-165.
    [7]郭鹏,陈正.[J].燃烧科学与技术,2010,16(5):472-476.
    [8]尚静,查东,李来才,等.[J].化学学报,2006,64(9):923-929.
    [9]马咏梅,苏克和.[J].分子科学学报,2017,33(3):225-230.
    [10]徐伯华,李来才,唐作华.[J].四川大学学报:自然科学版,2002,39(4):733-736.
    [11]KOHN W,SHAM L J.[J].Phys Rev,1965,140(4A):A1133-A1138.
    [12]SOUSA S F,FERNANDES P A,RAMOS M J.[J].J Phys Chem A,2007,111(42):10439-10452.
    [13]苏克和,魏俊.[J].物理化学学报,2000,16(7):643-651.
    [14]苏克和,魏俊.[J].物理化学学报,2000,16(8):718-723.
    [15]SUN X H,YAO Q,LI Z R,et al.[J].Theor Chem Acc,2017,136(5):64.
    [16]CANNEAUX S,BOHR F,HENON E.[J].J Comput Chem,2014,35(1):82-93.
    [17]WIGNER,E P.[J].Zeitschrift Für Physikalische Chemie,1932,19B(1):203-216.
    [18]ALECU I M,ZHENG J,ZHAO Y,et al.[J].J Chem Theor Comput,2010,6(9):2872-2887.
    [19]RUSSELL D,JOHNSONⅢ.NIST Computational Chemistry Comparison and Benchmark Database.NIST Standard Reference Database Number 101,19.[DB].2018.
    [20]谢兵,申伟,胡武洪.[J].重庆师范大学学报:自然科学版,2005,22(3):101-104.
    [21]DAVID C Y.Computational Chemistry:A Practical Guide for Applying Techniques to Real-World Problems[M].New York:John Wiley&Sons Inc,2001:60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700