用户名: 密码: 验证码:
琉璃河地区地下水化学特征对微生物群落结构影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of chemical characteristics of groundwater on microbial community structures in the Liuli River
  • 作者:李军 ; 蓝芙宁 ; 邹胜章 ; 林永生 ; 张翠云
  • 英文作者:LI Jun;LAN Funing;ZOU Shengzhang;LIN Yongsheng;ZHANG Cuiyun;Key Laboratory of Karst Dynamics,Ministry of Natural Resources & Guangxi,Institute of Karst Geology,Chinese Academy of Geological Science;Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Science;
  • 关键词:地下水 ; 高通量测序 ; 微生物群落 ; 影响因子
  • 英文关键词:groundwater;;high-throughput sequencing;;microbial community;;impact factor
  • 中文刊名:NSBD
  • 英文刊名:South-to-North Water Transfers and Water Science & Technology
  • 机构:中国地质科学院岩溶地质研究所自然资源部/广西岩溶动力学重点实验室;中国地质科学院水文地质环境地质研究所;
  • 出版日期:2019-03-21 10:26
  • 出版单位:南水北调与水利科技
  • 年:2019
  • 期:v.17;No.102
  • 基金:国家重点研发计划(2016YFC0502502);; 中国地质调查局基本科研业务费(JYYWF20182001);; 国家自然科学基金(41471447)~~
  • 语种:中文;
  • 页:NSBD201903012
  • 页数:8
  • CN:03
  • ISSN:13-1334/TV
  • 分类号:101-108
摘要
为查明区域地下水化学特征对微生物群落结构影响,在北京琉璃河镇及周边地区采集9组地下水样。在调查地下水化学特征基础上,利用高通量测序技术,对地下水样进行16SrRNA基因V4-V5区测序,用于分析地下水化学特征与微生物群落结构间相关性。水化学结果表明,研究区地下水共有HCO_3-Ca·Mg、HCO_3·Cl-Ca、HCO_3·Cl·SO_4-Ca和HCO_3-Ca水4种水型,主要水型为HCO_3-Ca·Mg水,部分地下水受NO_3-、SO_42-污染。微生物结果表明,研究区地下水优势菌门为Proteobacteria,但无明显优势菌属。不同水型中微生物多样性呈地下水化学类型越简单,微生物群落多样性水平越低趋势。HCO_3-Ca·Mg、HCO_3·Cl-Ca、HCO_3·Cl·SO_4-Ca和HCO_3-Ca水4种水型中共有菌属数量为113个,特有菌属数量分别为186、32、33和2个。影响因子对微生物群落结构影响程度为浊度>EC(电导率)>DO(溶解氧)>pH,较高的EC和DO值有利于Pseudomonas、Vogesella、Hydrogenophaga菌属生长,pH适度增加有利于Gallionella、Nitrospira菌属生长。综上可知,区域地下水化学特征对微生物群落结构具有显著影响。
        Nine groundwater samples in the Liuli River and its surrounding areas in Beijing were taken to investigate the effects of characteristics of regional groundwater chemistry on microbial community.Characteristics of groundwater chemistry were examined,and the V4-V5 region of 16 SrRNA was scanned by the high-throughput sequencing.The correlation between groundwater chemical characteristics and microbial community structure were then explored.The results of hydrochemistry showed that HCO_3-Ca·Mg,HCO_3·Cl-Ca,HCO_3·Cl·SO_4-Ca and HCO_3-Ca were found and the main type is HCO_3-Ca·Mg in the study area.Microbial analysis results showed that Proteobacteria was the predominant phylum and predominant gene was not found in the study area.The microbial diversity from different types of groundwater showed that the level of microbial diversity increased with complexity of groundwater chemical types.A total of 113 genera were found in the four chemical types of groundwater,and the numbers of microorganisms in HCO_3-Ca·Mg,HCO_3·Cl-Ca,HCO_3·Cl·SO_4-Ca and HCO_3-Ca were 186,32,33 and 2,respectively.The order of groundwater impact on microbial community was turbidity>EC>DO>pH.The turbidity,Pseudomonas,Vogesella and Hydrogenophaga were benefited from Higher EC and DO values,and the Gallionella and Nitrospira were stimulated by moderate increase of pH.In summary,the characteristics of regional groundwater chemistry had significant effects on microbial community.
引文
[1]DAVIS J W,KLIER N J,CARPENTER C L.Natural biological attenuation of benzene in ground water beneath a manufacturing facility[J].Groundwater,1994,32(2):215-226.DOI:10.1111/j.1745-6584.1994.tb00636.x.
    [2]NOBRE R C,NOBRE M M.Natural attenuation of chlorinated organics in a shallow sand aquifer[J].Journal of Hazardous Materials,2004,110(1-3):129-137.DOI:10.1016/j.jhazmat.2004.02.046.
    [3]CORSEUIL H X,MONIER A L,GPMES A P N,et al.Biodegradation of soybean and castor oil biodiesel:implications on the natural attenuation of monoaromatic hydrocarbons in groundwater[J].Ground Water Monitoring&Remediation,2011,31(3):111-118.DOI:10.1111/j.1745-6592.2011.01333.x.
    [4]蔡婧怡,陈宗宇,蔡五田,等.某石化污染场地含水层自然降解BTEX能力评估[J].现代地质,2015,29(2):383-389.(CAI J Y,CHEN Z Y,CAI W T,et al.The assessment of aquifer natural attenuation(BTEX)capacity in a petrochemical contaminated site[J].Geoscience,2015 29(2):383-389(in Chinese))DOI:10.3969/j.issn.1000-8527.2015.02.023.
    [5]DANIELOPOL D L,POSPISIL P,ROUCH R.Biodiversity in groundwater:a large-scale view[J].Trends in Ecology&Evolution,2000,15(6):223-224.DOI:10.1016/s0169-5347(00)01868-1.
    [6]GRIEBLER C,LUEDERS T,GIBERT J,et al.Microbial biodiversity in groundwater ecosystems[J].Freshwater Biology,2010,54(4):649-677.DOI:10.1111/j.1365-2427.2008.02013.x.
    [7]MA J,RIXEY W G,ALVAREZ P J J.Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release[J].Water Research,2015,68:479-486.DOI:10.1016/j.watres.2014.10.023.
    [8]MA J,NOSSA C W,ALVAREZ P J J.Groundwater ecosystem resilience to organic contaminations:microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume[J].Water Research,2015,80:119-129.DOI:10.1016/j.watres.2015.05.003.
    [9]刘雅慈.包气带中洛克沙胂降解的微生物作用机理研究[D].北京:中国地质科学院,2017.20-76.(LIU YC.Microbial mechanism of roxarsone degradation in vadose zone[D].Chinese Academy of Geological Science(Beijing),2017.20-76.(in Chinese))
    [10]CHOI H M,LEE J Y.Groundwater contamination and natural attenuation capacity at a petroleum spilled facility in Korea[J].Journal of Environmental Sciences,2011,23(10):1650-1659.DOI:10.1016/s1001-0742(10)60568-2.
    [11]LI M,ORGEN E T V,DEVRIES D J,et al.Benchscale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California[J].Biodegradation,2015,26(1):39-50.DOI:10.1007/s10532-014-9714-1.
    [12]ZHANG P,VAN NOSTAND J D,HE Z,et al.Aslow-release substrate stimulates groundwater microbial communities for long-term in-situ Cr(VI)reduction[J].Environmental Science&Technology,2015,49(21):12922-12931.DOI:10.1021/acs.est.5b00024.
    [13]ZHANG P,WU W M,VAN NOSTAND J D,et al.Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI)Reduction[J].Applied&Environmental Microbiology,2015,81(12):4164-4172.DOI:10.1128/aem.00043-15.
    [14]LIEN P J,YANG Z H,CHANG Y M,et al.Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil:Effectiveness and mechanism study[J].Chemical Engineering Journal,2016,289:525-536.DOI:10.1016/j.cej.2016.01.011.
    [15]李军.高通量测序技术及其在地下水污染研究中的应用[D].北京:中国地质科学院,2018.40-41.(LI J.Highthroughput sequencing technology and its application in contamination of groundwater[D].Chinese Academy of Geological Science(Beijing),2018.40-41.(in Chinese)).
    [16]YUSOFF M Z M,HU A,FENG C,et al.Influence of pretreated activated sludge for electricity generation in microbial fuel cell application[J].Bioresource technology,2013,145:90-96.DOI:10.1016/j.biortech.2013.03.003.
    [17]徐飞,蔡体久,杨雪,等.三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响[J].生态学报,2016,36(22):7412-7421.(XU F,CAI T J,YANG X,et al.Effect of cultivation and natural restoration on soil bacterial community diversity in marshland in the Sanjiang Plain[J].Acta Ecology Sinica,2016 36(22):7412-7421.(in Chinese))DOI:10.5846/stxb201601040015.
    [18]GARCIA C B,GARCIA J,MARTIN M M,et al.Collinearity:revisiting the variance inflation factor in ridge regression[J].Journal of Applied Statistics,2015,42(3):648-661.DOI:10.1080/02664763.2014.980789.
    [19]赵焕,王仕琴,孔晓乐,等.华北低山丘陵区潴龙河流域地下水水质特征及成因分析[J].水文地质工程地质,2016,43(2):17-24.(ZHAO H,WANG S Q,KONGX L,et al.A study of the water quality characteristics and factors in the Zhulong river basin in the hilly region of North China[J].Hydrogeology and Engineering Geology,2016,43(2):17-24.(in Chinese))DOI:10.16030/j.cnki.issn.1000-3665.2016.02.03.
    [20]World Health Organization.Guidelines for drinkingwater quality.Vol.1,(3rd Ed)[M].World Health Organization,2008.
    [21]GB/T 14848-2017.地下水质量标准[S].GB/T 14848-2017.Groundwater quality standard[S].(in Chinese))
    [22]蔡萍萍,宁卓,何泽,等.采油井场土壤微生物群落结构分布[J].环境科学,2018,39(7):1-14.(CAI P P,NING Z,HE Z,et al.Microbial community distribution in soils of an oil exploitation site[J].Environmental Science,2018,39(7):1-14.(in Chinese))DOI:10.13227/j.hjkx.201711233.
    [23]康鹏亮,黄廷林,张海涵,等.西安市典型景观水体水质及反硝化细菌种群结构[J].环境科学,2017,38(12):5174-5183.(KANG P L,HUANG T L,ZHANGH H,et al.Water quality and diversity of denitrifier community structure of typical scenic water bodies in Xi`an[J].Environmental Science,2017,38(12):5174-5183.(in Chinese))DOI:10.13227/j.hjkx.201703179.
    [24]JI B,WANG H,YANG K.Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere[J].Bioresource Technology,2014,158(2):156-160.DOI:10.1016/j.biortech.2014.02.025.
    [25]ZHOU M,YE H,ZHAO X.Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater[J].Biotechnology&Bioprocess Engineering,2014,19(2):231-238.DOI:10.1007/s12257-013-0580-1.
    [26]郇环,王金生,赖德胜.松花江吉林段沿岸浅层地下水硝酸盐污染特征和影响因素分析[J].南水北调与水利科技,2014,12(6):6-11.(HUAN H,WANG J S,LAI D S.Characteristics and influencing factors of nitrate pollution in shallow groundwater at Jilin section of Songhua River[J].South-to-North Water Transfers and Water Science&Technology,2014,12(6):6-11.(in Chinese))DOI:10.13476/j.cnki.nsbdqk.2014.06.002.
    [27]KAVITHA S,SELVAKUMAR R,SATHISHKU-MAR M,et al.Nitrate removal using Brevundimonas diminuta MTCC 8486from ground water.[J].Water Science&Technology A Journal of the International Association on Water Pollution Research,2009,60(2):517-524.
    [28]VU D H,MUTTAQI K M,AGALGAONKAR A P.A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables[J].Applied Energy,2015,140:385-394.DOI:10.1016/j.apenergy.2014.12.011.
    [29]SPRING S,WAGNER H P,KAMPFER P.Malikia granosa gen.nov.sp.nov.a novel polyhydroxyalkanoate-and polyphosphate-accumulating bacterium isolated from activated sludge,and reclassification of Pseudomonas spinosa as Malikia spinosa comb.nov[J].Int JSyst Evol Microbiol,2005,55(2):621-629.DOI:10.1099/ijs.0.63356-0.
    [30]KOCH H,GALUSHKO A,ALBERTSEN M,et al.Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation[J].Science,2014,345(6200):1052-1054.DOI:10.1126/science.1256985.
    [31]KOCH H,LUCKE S,ALBERTSEN M,et al.Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(36):11371-11376.DOI:10.1073/pnas.1506533112.
    [32]FUJITANI H,USHIKI N,TSUNEDA S,et al.Isolation of sublineage I Nitrospira by a novel cultivation strategy[J].Environmental Microbiology,2013,16(10):3030-3040.DOI:10.1111/1462-2920.12248.
    [33]EHRICH S,BEHRENS D,LEBEDEVA E,et al.Anew obligately chemolithoautotrophic,nitrite-oxidizing bacterium,Nitrospira moscoviensis sp.nov.and its phylogenetic relationship[J].Archives of Microbiology,1995,164(1):16-23.DOI:10.1007/s002030050230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700