用户名: 密码: 验证码:
基于遥感数据分析干旱区人工绿洲灌区的水盐时空分异特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal distribution of water and salt in artificial oasis irrigation area in arid area based on remote sensing analysis
  • 作者:徐存东 ; 王荣荣 ; 程慧 ; 连海东 ; 龚雪文 ; 刘璐瑶 ; 王燕
  • 英文作者:Xu Cundong;Wang Rongrong;Cheng Hui;Lian Haidong;Gong Xuewen;Liu Luyao;Wang Yan;School of Water Conservancy, North China University of Water Resources and Electric Power;Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering,Henan Province;China Institute of Water Resources and Hydropower Research;Tianjin TEDA Saline Green Research Center Co.Ltd.;
  • 关键词:遥感 ; 土壤 ; 盐分 ; ArcGIS ; 可拓层次分析法 ; 区域尺度 ; 水盐时空分异 ; 景电灌区
  • 英文关键词:remote sensing;;soils;;salt;;ArcGIS;;extension analytic hierarchy process;;regional scale;;spatial-temporal distribution of water and salt;;Jingdian irrigation district
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:华北水利水电大学水利学院;水资源高效利用与保障工程河南省协同创新中心;中国水利水电科学研究院;天津泰达盐碱地绿化研究中心有限公司;
  • 出版日期:2019-01-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.354
  • 基金:国家自然科学基金资助项目(51579102,31360204);; 河南省科技厅科技创新人才支持计划(174200510020);; 河南省高校创新团队支持计划(19IRTSTHN030);; 宁夏回族自治区水利科技专项项目(TYZB-ZFGG-2017-31);; 华北水利水电大学博士研究生创新基金
  • 语种:中文;
  • 页:NYGU201902011
  • 页数:10
  • CN:02
  • ISSN:11-2047/S
  • 分类号:88-97
摘要
干旱区人工绿洲的土壤盐渍化产生和演化过程是一个多要素参与、多层次驱动、多过程耦合的复杂过程。为揭示干旱扬水灌区区域尺度的水盐时空分异特征,以地处腾格里沙漠边缘的甘肃省景泰川电力提灌工程一期灌区为研究区,选取1994、2001、2008、2015年的直接参与驱动区域土壤水盐分异过程的地表盐分、土壤含盐量、地下水矿化度、地表灌水量、地下水埋深等5个指标因子。运用可拓层次分析法确定各指标因子权重,借助ArcGIS软件中监督分类以及空间分析技术,获取各指标因子的空间分布栅格图件,将各栅格图件进行标准化处理后按照指标权重进行空间嵌套并叠加,定量化地分析了研究区区域尺度的水盐时空分异特征。结果表明:研究区次生盐碱地主要分布在东部的封闭型水文地质单元,总体看,研究区内轻度盐碱地面积最大,中度盐碱地次之,重度盐碱地面积最小;从解译的进程发展态势可知,研究区盐碱地还处于发展过程中,并呈现出加速增长趋势;由可拓层次分析法分析各指标因子权重排序为地下水埋深(0.3190)>地下水矿化度(0.2710)>土壤含盐量>地表盐分>地表灌水量,可见,区域内的地下水埋深和地下水矿化度是影响区域尺度水盐时空分异进程的主要驱动因素;研究区水盐时空分布态势与总体地势相关,呈现出西低东高的总体分布特征,由西南向东北以弧线状递增的发展趋势,灌区内东北部封闭型水文地质单元地下水位抬升明显,土壤盐渍化发展迅速。
        The process of soil salinization in the artificial oasis in the arid area is a complex process involving multiple factors, multi-level driving and multi-process coupling. To reveal the spatial-temporal distribution of water and salt in arid pumping-irrigation areas, the first phase irrigation area of Jingtaichuan Electrical Pumping Irrigation District in Gansu Province, located at the edge of Tengger desert, was selected as the typical research area. A total of five indicators including surface salt, soil salinity, groundwater salinity, surface irrigation water, and groundwater depth were selected in 1994, 2001, 2008, and 2015. We determined the weights of each indicator factor by extension analytic hierarchy process. With the help of monitoring classification and spatial analysis technology in ArcGIS software, spatial distribution raster maps of each indicator factor were obtained, and each raster map is standardized, the space is nested and superimposed according to the weight of each index factor, so as to get the spatial-temporal distribution of water and salt in the regional scale. The results showed that: 1) The weight of each factor affecting the spatial-temporal differentiation process of water and salt on a regional scale was ranked as follows: groundwater depth(0.3190), > groundwater salinity(0.2710), > soil salinity(0.1971), > surface salinity(0.1748), and > surface irrigation(0.0381).Groundwater depth and groundwater salinity were the main driving factors affecting the spatial-temporal differentiation of water and salt at regional scales. 2) The saline land in the study area were mainly distributed in the eastern closed hydro-geological units. Overall, the area of mild saline land was the largest, accounting for 7.22%-11.12%, followed by moderate saline land, accounting for 3.19%-5.72%, the area of heavy saline land was the smallest, accounting for 3.03%-4.91% during 1994-2015. The saline land in the study area was still in the process of development, and showed an accelerating growth trend. Among them, the development speed was mild saline land area > the moderate saline land > the heavy saline land. 3) The spatial and temporal distribution of water and salt in the study area was related to the overall topography. The distribution of total equivalent value of water and salt was low in the west and high in the east, increasing from southwest to northeast in arc diffusion development trend, affected by natural geomorphology and topographic conditions. With the passage of time, the total can be divided into two stages: stable development period(1994-2008) and rapid development period(2008-2015).Affected by the continuous expansion of the regions with higher total water and salt content in the east to the west, the security of cultivated land resources in the west was potentially threatened, and the overall development trend of water and salt in the study area was not conducive to the sustainable development of agricultural production in the irrigated areas.Based on the analysis of single driving factors, this study proposes an important means for coupling and superimposing multiple driving factors, which provides a new visualization for the comprehensive development of the spatial-temporal differentiation of water and salt in the study area. It can provide useful reference for studying the development trend of spatial-temporal differentiation process of water and salt in regional scale.
引文
[1]李素艳,翟鹏辉,孙向阳,等.滨海土壤盐渍化特征及土壤改良研究[J].应用基础与工程科学学报,2014,22(6):1069-1078.Li Suyan,Zhai Penghui,Sun Xiangyang,et al.Saline-alkali soil characteristics and improvement in coastal area[J].Journal of Basic Science and Engineering,2014,22(6):1069-1078.(in Chinese with English abstract)
    [2]管孝艳,王少丽,吕烨,等.土壤水盐空间变异性及其尺度效应的多重分形分析[J].水利学报,2013,44(S1):8-14.Guan Xiaoyan,Wang Shaoli,Lv Ye,et al.Analysis on spatial variability of soil water and salt its scale effect based on multifractal[J].Journal of Hydraulic Engineering,2013,44(S1):8-14.(in Chinese with English abstract)
    [3]吴亚坤,刘广明,杨劲松,等.基于反距离权重插值的土壤盐分三维分布解析方法[J].农业工程学报,2013,29(3):100-106.Wu Yakun,Liu Guangming,Yang Jinsong,et al.Interpreting method of regional soil salinity 3D distribution based on inverse distance weighting[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(3):100-106.(in Chinese with English abstract)
    [4]Taghizadeh-Mehrjardi R,Minasny B,Sarmadian F,et al.Digital mapping of soil salinity in Ardakan region,central Iran[J].Geoderma,2014,213:15-28.
    [5]Scudiero E,Skaggs T H,Corwin D L.Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance[J].Ecological Indicators,2016,70:276-284.
    [6]Ghassemi F,Jakeman A J,Nix H A.Salinisation of Land and Water Resources:Human Causes,Extent,Management and Case Studies[M].Australia:University of New South Wales Press,1995.
    [7]王佳丽,黄贤金,钟太洋,等.盐碱地可持续利用研究综述[J].地理学报,2011,66(5):673-684.Wang Jiali,Huang Xianjin,Zhong Taiyang,et al.Review on sustainable utilization of salt-affected land[J].Acta Geographica Sinica,2011,66(5):673-684.(in Chinese with English abstract)
    [8]刘广明,吴亚坤,杨劲松,等.基于电磁感应技术的区域三维土壤盐分空间变异研究[J].农业机械学报,2013,44(7):78-82+66.Liu Guangming,Wu Yakun,Yang Jinsong,et al.Regional3-D soil salt spatial variability based on electromagnetic induction technology[J].Transactions of the Chinese Society of Agricultural Machinery,2013,44(7):78-82+66.(in Chinese with English abstract)
    [9]徐存东,程慧,王燕,等.灌区土壤盐渍化程度云理论改进多级模糊评价模型[J].农业工程学报,2017,33(24):88-95.Xu Cundong,Cheng Hui,Wang Yan,et al.Application of improved multiple fuzzy evaluation model based on cloud theory in evaluation of soil salinization degree[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(24):88-95.(in Chinese with English abstract)
    [10]Krige D G.A statistical approaches to some basic mine valuation problems on the Witwatersrand[J].Journal of the Chemical,1951,52:119-139.
    [11]Campbell J B.Spatial variation of sand content and pHwithin single contiguous delineation of two soil mapping units[J].Soil Sci Soc Am J.1978,42:460-464.
    [12]Stein A,Sylla M.Spatial variability of soil salinity at different scales in themangrove rice agro-ecosystem in West Africa[J].Agric-ecosyst-environ,1995,54(1):1-15.
    [13]Panagopoulos T,Jesus J,Antunes M D C,et al.Analysis of spatial interpolation for optimizing management of a salinized field cultivated with lettuce[J].European Journal of Agronomy,2006,24(1):1-10.
    [14]Keshavarzi A,Sarmadian F.Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region[J].Annals of Warsaw University of Life Sciences-SGGW.Land Reclamation,2012,44(1):3-14.
    [15]姚荣江,杨劲松.黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J].农业工程学报,2009,23(8):45-51.Yao Rongjiang,Yang Jinsong.Quantitative analysis of spatial distribution pattern of soil salt accumulation in plough layer and shallow groundwater in the Yellow River Delta[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,23(8):45-51.(in Chinese with English abstract)
    [16]王云强,邵明安,刘志鹏.黄土高原区域尺度土壤水分空间变异性[J].水科学进展,2012,23(3):310-316.Wang Yunqiang,Shao Mingan,Liu Zhipeng.Spatial variability of soil moisture at a regional scale in the Loess Plateau[J].Advances in Water Science,2012,23(3):310-316.(in Chinese with English abstract)
    [17]李彬,史海滨,妥德宝,等.节水改造前后土壤盐分剖面特征及其空间分布-以内蒙古河套灌区中游临河区为例[J].干旱区研究,2015,32(4):663-673.Li Bin,Shi Haibin,Tuo Debao,et al.Soil salinity profile characteristics and its spatial distribution before and after water saving-taking the middle reach in Hetao Irrigation District of Inner Mongolia as an example[J].Arid Zone Research,2015,32(4):663-673.(in Chinese with English abstract)
    [18]赵明松,张甘霖,王德彩,等.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报,2013,50(1):1-11.Zhao Mingsong,Zhang Ganlin,Wang Decai,et al.Spatial varisbility of soil organic matter and its dominating factors in Xu-huai alluvial plain[J].Acta Pedologica Sinica,2013,50(1):1-11.(in Chinese with English abstract)
    [19]王卓然,赵庚星,高明秀,等.黄河三角洲垦利县夏季土壤水盐空间变异及土壤盐分微域特征[J].生态学报,2016,36(4):1040-1049.Wang Zhuoran,Zhao Gengxing,Gao Mingxiu,et al.Spatial variation of soil water and salt and microscopic variation of soil salinity in summer in typical area of the Yellow River Delta in Kenli county[J].Acta Ecologica Sinica,2016,36(4):1040-1049.(in Chinese with English abstract)
    [20]宋南奇,王诺,吴暖,等.基于GIS的我国渤海1952-2016年赤潮时空分布[J].中国环境科学,2018,38(3):1142-1148.Song Nanqi,Wang Nuo,Wu Nuan,et al.Temporal and spatial distribution of harmful algal blooms in the Bohai Sea during 1952-2016 based on GIS[J].China Environmental Science,2018,38(3):1142-1148.(in Chinese with English abstract)
    [21]Ahmad N,Pandey P.Assessment and monitoring of land degradation using geospatial technology in Bathinda district,Punjab,India[J].Solid Earth,2017,9(1):1-28.
    [22]徐存东,翟禄新,王燕,等.干旱灌区封闭型和开敞型水文地质单元的水盐动态监测研究[J].中国农村水利水电,2011(11):149-152,163.Xu Cundong,Zhai Luxin,Wang Yan,et al.Research on the monitoring of water-salt dynamic in closed and open hydrogeological units of arid irrigation areas[J].China Rural Water and Hydropower,2011(11):149-152,163.(in Chinese with English abstract)
    [23]马驰.基于HJ1A-HSI反演松嫩平原土壤盐分含量[J].干旱区研究,2014,31(2):226-230.Ma Chi.Quantitative retrieval of soil salt content in the Songnen Plain based on HJ1A-HIS images[J].Arid Zone Research,2014,31(2):226-230.(in Chinese with English abstract)
    [24]刘金鹏,高世铭,王得楷,等.基于可拓层次分析法的区域泥石流灾害评价研究[J].干旱区地理,2015,38(3):531-538.Liu Jinpeng,Gao Shiming,Wang Dekai,et al.Debris flow disaster risk assessment based on extension AHP[J].Arid Land Geography,2015,38(3):531-538.(in Chinese with English abstract)
    [25]Vahidnia M H,Alesheikh A,Alimohammadi A,et al.Fuzzy analytical hierarchy process in GIS application[J].Int Arch Photogramm,2008,22(2):593-596.
    [26]Ognjanovi?I,Ga?evi?D,Bagheri E.A stratified framework for handling conditional preferences:An extension of the analytic hierarchy process[J].Expert Systems with Applications,2013,40(4):1094-1115.
    [27]李莉,匡昭敏,莫建飞,等.基于AHP和GIS的广西秋旱灾害风险等级评估[J].农业工程学报,2013,29(19):193-201,293.Li li,Kuang Zhaomin,Mo Jianfei,et al.Assessment of risk ranking for autumn drought in Guangxi province based on AHP and GIS[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(19):193-201,293.(in Chinese with English abstract)
    [28]陈曦.中国干旱区土地利用与土地覆盖变化[M].北京:科学出版社,2008:371-381.
    [29]李文昊,王振华,郑旭荣,等.新疆绿洲盐碱地滴灌条件下地下水局部动态对荒地盐分的影响[J].干旱区研究,2016,33(5):1110-1118.Li Wenhao,Wang Zhenhua,Zheng Xurong,et al.Effects of local dynamic change of groundwater on soil salinity in wasteland under drip irrigation in saline or alkaline land of oasis in Xinjiang[J].Arid Zone Research,2016,33(5):1110-1118.(in Chinese with English abstract)
    [30]邓宝山,瓦哈甫·哈力克,党建华,等.克里雅绿洲地下水埋深与土壤盐分时空分异及耦合分析[J].干旱区地理,2015,38(3):599-607.Deng Baoshan,Wahap Halik,Dang Jianhua,et al.Coupled analysis of spatio-temporal variability of groundwater depth and soil salinity in Keriya Oasis[J].Arid Land Geography,2015,38(3):599-607.(in Chinese with English abstract)
    [31]管孝艳,王少丽,高占义,等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报,2012,32(4):1202-1210.Guan Xiaoyan,Wang Shaoli,Gao Zhanyi,et al.Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district[J].Acta Ecologica Sinica,2012,32(4):1202-1210.(in Chinese with English abstract)
    [32]刘庆杰,荆林海,王梦飞,等.基于克隆选择支持向量机高光谱遥感影像分类技术[J].光谱学与光谱分析,2013,33(3):746-751.Liu Qingjie,Jing Linhai,Wang Mengfei,et al.Hyperspectral remote sensing image classification based on SVM optimized by clonal selection[J].Spectroscopy And Spectral Analysis,2013,33(3):746-751.(in Chinese with English abstract)
    [33]杨凯歌,冯学智,肖鹏峰,等.优化子空间SVM集成的高光谱图像分类[J].遥感学报,2016,20(3):409-419.Yang Kaige,Feng Xuezhi,Xiao Pengfeng,et al.Optimal subspace ensemble with SVM for hyperspectral image classification[J].Journal of Remote Sensing,2016,20(3):409-419.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700