用户名: 密码: 验证码:
SnAg纳米粒子的尺寸控制及其机制(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Size control and its mechanism of SnAg nanoparticles
  • 作者:张卫鹏 ; 邹长东 ; 赵炳戈 ; 翟启杰 ; 高玉来
  • 英文作者:Wei-peng ZHANG;Chang-dong ZOU;Bing-ge ZHAO;Qi-jie ZHAI;Yu-lai GAO;Laboratory for Microstructures,Shanghai University;School of Materials Science and Engineering,Shanghai University;Institute of Research of Iron and Steel;
  • 关键词:Sn3.5Ag ; 尺寸控制 ; 纳米颗粒 ; 化学还原法
  • 英文关键词:Sn3.5Ag;;size control;;nanoparticles;;chemical reduction method
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:上海大学微结构实验室;上海大学材料科学与工程学院;江苏省(沙钢)钢铁研究院;
  • 出版日期:2014-03-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2014
  • 期:v.24
  • 基金:Projects(50971086,51171105)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201403021
  • 页数:8
  • CN:03
  • ISSN:43-1239/TG
  • 分类号:152-159
摘要
采用一种改进的化学还原法,在室温下合成Sn3.5Ag(质量分数,%)纳米颗粒。实验所用表面活性剂和还原剂分别为邻啡罗琳和硼氢化钠。X射线衍射分析表明所合成的纳米粒子没有明显的氧化现象。结果表明:在反应物浓度较小时,产生的一次粒子较少,团聚及二次粒子生长程度较小,纳米颗粒的尺寸也随之减小。当以某一合适的速率添加还原剂到前驱体溶液中时,表面活性剂浓度对纳米颗粒尺寸起到控制作用。由于表面活性剂分子可以与纳米团簇之间产生配位作用,因此可以抑制纳米颗粒的长大。表面活性剂与前驱体溶液质量的比值越大,得到的纳米颗粒尺寸越小。
        Sn3.5Ag(mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is.
引文
[1]YASUDA H,MITSUISHI K,MORI H.Particle-size dependence of phase stability and amorphouslike phase formation in nanometersized Au-Sn alloy particles[J].Physical Review B,2001,64:094101.
    [2]ZOU Chang-dong,GAO Yu-lai,YANG Bin,ZHAI Qi-jie.Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis[J].Transactions of Nonferrous Metals Society of China,2010,20:248-253.
    [3]WEI Su-feng,JIANG Qing,LIAN Jian-she.Synthesis and characteristics of large-scale ZnO rods by wet chemical method[J].Transactions of Nonferrous Metals Society of China,2008,18:1089-1093.
    [4]BHAGATHSINGH W,NESARAJ A S.Low temperature synthesis and thermal properties of Ag-Cu alloy nanoparticles[J].Transactions of Nonferrous Metals Society of China,2013,23:128-133.
    [5]LITTLE SA,BEGOU T,COLLINS RW,MARSILLAC S.Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry[J].Applied Physics Letters,2012,100:051107.
    [6]LUO Wen-hua,SU Ka-lin,LI Ke-min,LIAO Gao-hua,HU Neng-wen,JIA Ming.Substrate effect on the melting temperature of gold nanoparticles[J].The Journal of Chemical Physics,2012,136:23470.
    [7]JIANG H,MOON K,HUA F,WONG C P.Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders[J].Chemistry of Materials,2007,19:4482-4485.
    [8]CHEN Hong-tao,HAN Jing,LI Jue,LI Ming-yu.Inhomogeneous deformation and microstructure evolution of Sn–Ag-based solder interconnects during thermal cycling and shear testing[J].Microelectronics Reliability,2012,52:1112-1120.
    [9]KIM I,KANG M,KIM SW,JUNG E,LEE S H.Thermal diffusivity of Sn–Ag–Cu-based,Pb-free,micro-and nano-sized solder balls[J].Thermochimica Acta,2012,542:42-45.
    [10]BENJAMIN J.Dispersion strengthened superalloys by mechanical alloying[J].Metallurgical and Materials Transactions B,1970,1:2943-2951.
    [11]BIRRINGER R,GLEITER H,KLEIN H P,MARQUARDT P.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J].Physics Letters A,1984,102:365-369.
    [12]CHANG I H T,REN Z.Simple processing method and characterisation of nanosized metal powders[J].Materials Science and Engineering A,2004,375-377:66-71.
    [13]GAO Y,ZOU C,YANG B,ZHAI Q,LIU J,ZHURAVLEV E,SCHICK C.Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy[J].Journal of Alloys and Compounds,2009,484:777-781.
    [14]ZHANG Qiu-li,YANG Zhi-mao,DING Bing-jun,LAN Xin-zhe,GUO Ying-juan.Preparation of copper nanoparticles by chemical reduction method using potassium borohydride[J].Transactions of Nonferrous Metals Society of China,2010,20(s):s240-s244.
    [15]FU Yue-jiao,ZHANG Lu-yan,CHEN Gang.Preparation of a carbon nanotube-copper nanoparticle hybrid by chemical reduction for use in the electrochemical sensing of carbohydrates[J].Carbon,2012,50:2563-2570.
    [16]HSIAO Li-yin,DUH Jenq-gong.Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu(x=0.2,0.5,1.0)alloy nanoparticles by the chemical reduction method[J].Journal of the Electrochemical Society,2005,152:J105-J109.
    [17]ZOU Chang-dong,GAO Yu-lai,YANG Bin,ZHAI Qi-jie.Synthesis and DSC study on Sn3.5Ag alloy nanoparticles used for lower melting temperature solder[J].Journal of Materials Science:Materials in Electronics,2010,21:868-874.
    [18]BRANDT W W,DWYER F P,GYARFAS E D.Chelate complexes of 1,10-phenanthroline and related compounds[J].Chemical Reviews,1954,54:959-1017.
    [19]GALLAGHER J,CHEN C H B,PAN C Q,PERRIN D M,CHO Y M,SIGMAN D S.Optimizing the targeted chemical nuclease activity of1,10-phenanthroline-copper by ligand modification[J].Bioconjugate Chemistry,1996,7:413-420.
    [20]PRIVMAN V,GOIA D V,PARK J,MATIJEVIC E.Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors[J].Journal of Colloid and Interface Science,1999,213:36-45.
    [21]WEISS G H.Overview of theoretical models for reaction rates[J].Journal of Statistical Physics,1986,42:3-36.
    [22]WANG Hua-zhi,ZHANG Lei,HUANG Juan-juan,LI Jian-gong.Facile synthesis and characterization of Co nanoplatelets with tunable dimensions via solution reduction process[J].Journal of Nanoparticle Research,2010,13:1709-1715.
    [23]WANG Y,LEE J Y,DEIVARAJ T C.Controlled synthesis of v-shaped SnO2 nanorods[J].Journal of Physical Chemistry B,2004,108:13589-13593.
    [24]WANG Y,LEE J Y.Molten salt synthesis of tin oxide nanorods:morphological and electrochemical features[J].Journal of Physical Chemistry B,2004,108:17832-17837.
    [25]SARKAR S,PRADHAN M,SINHA A K,BASU M,PAL T.Chelate effect in surface enhanced raman scattering with transition metal nanoparticles[J].The Journal of Physical Chemistry Letters,2009,1:439-444.
    [26]MUNIZ-MIRANDA M.Surface enhanced raman scattering and normal coordinate analysis of 1,10-phenanthroline adsorbed on silver sols[J].The Journal of Physical Chemistry A,2000,104:7803-7810.
    [27]JANG N H,SUH J S,MOSKOVITS M.Effect of surface geometry on the photochemical reaction of 1,10-phenanthroline adsorbed on silver colloid surfaces[J].The Journal of Physical Chemistry B,1997,101:8279-8285.
    [28]ZOU Chang-dong,GAO Yu-lai,YANG Bin,ZHAI Qi-jie.Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression[J].Journal of Materials Science:Materials in Electronics,2012,23:2-7.
    [29]SUBRAMANIAM C,TOM R T,PRADEEP T.On the formation of protected gold nanoparticles from AuCl4-by the reduction using aromatic amines[J].Journal of Nanoparticle Research,2005,7:209-217.
    [30]YANG You-ping,HUANG Ke-long,LIU Ren-sheng,WANG Li-ping,ZENG Wen-wen,ZHANG Ping-min.Shape-controlled synthesis of nanocubic Co3O4 by hydrothermal oxidation method[J].Transactions of Nonferrous Metals Society of China,2007,17:1082-1086.
    [31]PUNTES V F,KRISHNAN K M,ALIVISATOS A P.Colloidal nanocrystal shape and size control:The case of cobalt[J].Science,2001,291:2115-2117.
    [32]SCHMID G,CHI L F.Metal clusters and colloids[J].Advanced Materials,1998,10:515-526.
    [33]WANG Z L.Structural analysis of self-assembling nanocrystal superlattices[J].Advanced Materials,1998,10:13-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700