用户名: 密码: 验证码:
蛇纹岩化对洋中脊超基性岩热液硫化物成矿的影响:来自青藏高原德尔尼铜矿床的启示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of Serpentinization on Ultramafic Rock-Hosted Hydrothermal System along Mid-Ocean Ridges: Insight from Dur'ngoi Copper Massive Sulfide Deposit, Tibetan Plateau
  • 作者:张华添 ; 李江海
  • 英文作者:ZHANG Huatian;LI Jianghai;MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University;
  • 关键词:德尔尼铜矿床 ; 硫同位素 ; 超基性岩赋矿矿床 ; 洋底核杂岩 ; 海底热液硫化物矿床
  • 英文关键词:Dur'ngoi copper massive sulfide deposit;;sulfur isotope;;ultramafic-hosted deposits;;oceanic core complex;;seafloor hydrothermal field
  • 中文刊名:DGYK
  • 英文刊名:Geotectonica et Metallogenia
  • 机构:北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:大地构造与成矿学
  • 年:2019
  • 期:v.43;No.168
  • 基金:印度洋靶区断裂系统印度洋靶区断裂系统及其控矿作用(DY135-S2-1-01);; 多金属硫化物合同区资源勘探与评价(DY135-S1-1-03)联合资助
  • 语种:中文;
  • 页:DGYK201901010
  • 页数:12
  • CN:01
  • ISSN:44-1595/P
  • 分类号:113-124
摘要
洋中脊超基性岩热液成矿系统通常与洋底核杂岩构造有关,多发育大型矿床,具有巨大的资源前景。然而,受大洋调查取样手段的限制,超基性岩蛇纹岩化对成矿的影响仍需进一步研究。德尔尼铜矿床是地质历史上该类矿床的典型案例,对于理解其成矿模式,以及大洋硫化物勘探具有指导意义。本文选取德尔尼铜矿床块状硫化物样品进行黄铁矿的S同位素分析,结果表明其δ~(34)S值主要分布在-0.4‰~+6.3‰。结合前人研究发现,形成于深部网脉状、条带状矿石中的δ~(34)S值为负值,而经历表层喷流和破碎作用的块状和角砾状矿石中的δ~(34)S值为正值,二者呈对称分布,这主要是由于还原条件下岩浆排气产生的SO_2和H_2S动态平衡并逐渐沉淀S~(2-),表明蛇纹岩化提供的还原环境对热液系统演化产生了重要影响。然而,磁黄铁矿和矿床Ni的分布指示成矿物质中超基性岩的贡献较小,主要物质来源是洋中脊深部的基性岩浆,通过热液循环将物质运移至海底并喷流成矿。对比现今超基性岩赋矿的高温热液硫化物矿床,德尔尼铜矿床形成温度更低,代表了超基性岩赋矿热液硫化物中的中温端元,表明在距离拆离面一定距离(约2~4km)的位置也可能形成大型的热液硫化物矿床,这对于现今洋中脊热液硫化物勘探具有一定的指导意义。
        Modern seafloor ultramafic rock-hosted hydrothermal systems are generally associated with oceanic core complexes(OCCs). Most of them develop large deposits, suggestive of great resource potential for such systems. However, constrained by ocean investigation and sampling methods, the influence of serpentinization on ultramafic rock-hosted hydrothermal systems remains unclear. The Dur'ngoi copper massive sulfide deposit(DCMSD) in North Tibetan Plateau is such a Carboniferous prototype, providing insight into the understanding of its metallogenic process and guidance for modern ocean sulfide exploration. In this paper, sulfur isotope compositions of pyrite and typical minerals are analyzed. δ~(34)S values are between -0.4‰ to +6.3‰. Combined with previous data, we find that the sulfur isotopic compositions of DCMSD are closely associated with the ore types. δ~(34)S values of ore samples formed in surficial conditions(massive, loose, and brecciated ores) are positive, similar to most of the modern massive sulfides along mid-ocean ridges, while those for the ores formed deep(stockworks and striped ores) are negative. Their ~(34)S values are symmetrically distributed. This phenomenon cannot be explained by seawater-magma equilibrium, biological isotope fractionation, or SO_2 disproportionation reaction. We propose that the dynamic equilibrium of SO_2 and H_2S(products of magma degassing) and fractional deposition of sulfur under reducing environment may account for the observation. This process manifests the importance of reducing environment, which is generated by serpentinization of ultramafic host rocks, on the evolution of hydrothermal system. However, the distribution of pyrrhotite and Ni of DCMSD ore body implies that the material contribution of ultramafic rocks is limited. Instead, the mid-ocean ridge mafic magmas provide major material sources, which are transported to the seafloor by hydrothermal fluids and exhale to form the ore. Unlike the modern ultramafic-hosted high-temperature hydrothermal systems, DCMSD has lower metallogenic temperature, and represents the middle temperature end member of ultramafic rock-hosted hydrothermal system. The DCMSD case illustrates that large hydrothermal sulfide fields can be formed at a distance of ca. 2 to 4 km away from the detachment fault, which may shed lights on the modern mid-ocean ridge hydrothermal sulfide exploration.
引文
陈亮,孙勇,裴先治,高明,冯涛,张宗清,陈文.2001.德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据.科学通报,46(5):424-426.
    董富权.2010.德尔尼铜矿床成矿期次与矿床成因研究.西安:长安大学硕士学位论文:1-59.
    董富权,钱壮志,王建中,仲佳鑫,孙涛,徐刚,段俊.2012.青海德尔尼铜矿床成因最新研究进展.西北地质,45(3):93-102.
    段国莲.1998.论德尔尼黄铁矿型铜-钴矿床的地质特征及其与塞浦路斯铜矿的区别.化工矿产地质,20(4):287-294.
    段俊,钱壮志,黄喜峰,董富权,赵晓健,鲁浩.2014.青海德尔尼铜(钴)矿床矿石矿物特征及其地质意义.地球科学与环境学报,36(1):201-209.
    焦建刚,鲁浩,孙亚莉,黄喜峰,段俊.2013.青海德尔尼铜(锌钴)矿床Re-Os年龄及地质意义.现代地质,27(3):576-583.
    李鹏.2008.青海德尔尼铜矿成矿背景,矿床成因与找矿方向.西安:长安大学硕士学位论文:1-63.
    李小虎,初凤友,雷吉江,余星,张平萍.2014.青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨.地学前缘,21(1):196-204.
    青海省计委地质局.1973.中华人民共和国1︰200000玛沁区域地质调查报告.
    宋忠宝,栗亚芝,陈向阳,陈博,任有祥,张雨莲,张晓飞.2012.东昆仑德尔尼铜矿喷流岩--铁硅质岩的发现及其成矿意义.地质通报,31(7):1170-1177
    宋忠宝,王轩,任有祥,栗亚芝,王凯,陈向阳,陈博,王升勤,高永宝,李丽.2007.东昆仑德尔尼矿床矿床(体)的叠加成矿作用研究.西北地质,40(4):1-6.
    陶春辉,李怀明,黄威,韩喜球,武光海,苏新,周宁,林间,何拥华,周建平.2011.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义.科学通报,56(Z2):2413-2423.
    陶春辉,李怀明,金肖兵,周建平,吴涛,何拥华,邓显明,顾春华,张国堙,刘为勇.2014.西南印度洋脊的海底热液活动和硫化物勘探.科学通报,59(19):1812-1822.
    王玉往,秦克章.1997.VAMSD矿床系列最基性端员--青海省德尔尼大型铜钴矿床的地质特征和成因类型.矿床地质,16(1):1-10.
    许志琴,李海兵,杨经绥,陈文.2001.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用.地质学报,75(2):156-164.
    杨经绥,王希斌,史仁灯,许志琴,吴才来.2004.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳.中国地质,31(3):225-239.
    叶俊,石学法,杨耀民.2011.西南印度洋脊49.6°E热液区多金属硫化物硫同位素组成特征研究.矿物学报,31(S1):710-710.
    曾志刚,蒋富清,秦蕴珊,翟世奎.2001.现代海底热液沉积物的硫同位素组成及其地质意义.海洋学报,23(3):48-56.
    张华添,李江海,李洪林,王洪浩.2014.慢速扩张洋中脊热液成矿的典型实例--青藏高原北部德尔尼铜矿地质对比研究.海洋学报,36(4):40-51.
    章午生.1981.德尔尼铜矿地质.北京:地质出版社:1-113.
    章午生.1995.块状硫化物矿床的一个特殊类型--德尔尼铜矿.甘肃地质学报,4(2):22-31.
    章午生,陈杰.1996.超基性岩中含铜、钴块状硫化物矿床--德尔尼铜矿成因新认识.青海地质,5(1):37-52.
    Andersen C,Rüpke L,Hasenclever J,Grevemeyer I and Petersen S.2015.Fault geometry and permeability contrast control vent temperatures at the Logatchev 1hydrothermal field,Mid-Atlantic Ridge.Geology,43(1):51-54.
    Andreani M,Escartin J,Delacour A,Ildefonse B,Godard M,Dyment J,Fallick A E and Fouquet Y.2014.Tectonic structure,lithology,and hydrothermal signature of the Rainbow massif(Mid-Atlantic Ridge 36°14′N).Geochemistry Geophysics Geosystems,15(9):3543-3571.
    Augustin N,Lackschewitz K S,Kuhn T and Devey C W.2008.Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field(MAR 15°N).Marine Geology,256(1):18-29.
    Blum N and Puchelt H.1991.Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps,Red Sea.Mineralium Deposita,26(3):217-227.
    Brunner B,Bernasconi S M.2005.A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria.Geochimica et Cosmochimica Acta,69(20):4759-4771.
    Candela P A,Wylie A G and Burke T M.1989.Genesis of the ultramafic rock-associated Fe-Cu-Co-Zn-Ni deposits of the Sykesville district,Maryland Piedmont.Economic Geology,84(3):663-675.
    Charlou J L,Donval J P,Fouquet Y,Jean-Baptiste P and Holm N.2002.Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field(36°14′N,MAR).Chemical Geology,191(4):345-359.
    de Ronde C E J,Hannington M D,Stoffers P,Wright I C,Ditchburn R G,Reyes A G,Baker E T,Massoth G J,Lupton J E,Walker S L,Greene R R,Soong C W R,Ishibashi J,Lebon G T,Bray C J and Resing J A.2005.Evolution of a submarine magmatic-hydrothermal system:Brothers volcano,Southern Kermadec Arc,New Zealand.Economic Geology,100(6):1097-1133.
    Dias A S,Früh-Green G L,Bernasconi S M and Barriga F.2011.Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field.Marine Geology,279(1):128-140.
    Douville E,Charlou J L,Oelkers E H,Bienvenud P,Jove Colonc C F,Donvala J P,Fouqueta Y,Prieurb D and Apprioub P.2002.The rainbow vent fluids(36°14′N,MAR):The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids.Chemical Geology,184(1):37-48.
    Escartin J,Smith D K,Cann J,Schouten H,Langmuir C Hand Escrig S.2008.Central role of detachment faults in accretion of slow-spreading oceanic lithosphere.Nature,455(7214):790-794.
    Firstova A,Stepanova T,Cherkashov G,Goncharov A and Babaeva S.2016.Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field,MidAtlantic Ridge.Minerals,6(1):19.
    Fouquet Y,Pierre C,Etoubleau J,Charlou J L,Ondréas H,Barriga F J A S,Cherkashov G A,Semkova T,Poroshina I,Bohn M,Donval J P,Henry K,Murphy P and Rouxel O.2010.Geodiversity of hydrothermal along the Mid-Atlantic Ridge and ultramafic-hosted mineralization:A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit//Rona P A,Devey C W,Dyment J and Murton B J.Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridge.Washington D C:Geophysical Monograph,188:321-367.
    Gràcia E,Charlou J L,Radford-Knoery J and Parson L M.2000.Non-transform offsets along the Mid-Atlantic Ridge south of the Azores(38°N-34°N):Ultramafic exposures and hosting of hydrothermal vents.Earth and Planetary Science Letters,177(1):89-103.
    Hannington M D,de Ronde C D J and Petersen S.2005.Sea-floor tectonics and submarine hydrothermal systems//Hedenquist J W,Thompson J F H,Goldfarb R J and Richards J P.Colorado:Economic Geology 100th Anniversary Volume:111-141.
    Hannington M D,Galley A G,Herzig P M and Petersen S.1998.Comparison of the TAG Mound and stockwork complex with Cyprus-type massive sulfide deposits//Herzig P M,Humphris S E and Miller D J.Proceedings of the Ocean Drilling Program,Scientific Results 158.College Station,TX:389-415.
    Hannington M,Jamieson J,Monecke T,Petersen S and Beaulieu S.2011.The abundance of seafloor massive sulfide deposits.Geology,39(12):1155-1158.
    Herzig P M,Hannington M D and Arribas A.1998.Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc:Implications for magmatic contributions to seafloor hydrothermal systems.Mineralium Deposita,33(3):226-237.
    Humphris S E,Herzig P M,Miller D J,Alt J C,Becker K,Brown D,Brugmann G,Chiba H,Fouquet Y,Gemmell J B,Guerin G,Hannington M D,Holm N G,Honnorez JJ,Iturrino G J,Knott R,Ludwig R,Nakamura K,Petersen S,Reysenbach A L,Rona P A,Smith S,Sturz A A,Tivey M K and Zhao X.1995.The internal structure of an active sea-floor massive sulphide deposit.Nature,377(6551):713-716.
    Kelley D S,Karson J A,Früh-Green G L,Yoerger D R,Shank T M,Butterfield D A,Hayes J M,Schrenk M O,Olson E J,Proskurowski G,Jakuba M,Bradley A,Larson B,Ludwig K,Glickson D,Buckman K,Bradley A S,Brazelton W J,Roe K,Elend M J,Delacour A,Bernasconi S M,Lilley M D,Baross J A,Summons R Eand Sylva S.2005.A serpentinite-hosted ecosystem:The Lost City hydrothermal field.Science,307(5714),1428-1434.
    Marques A F A,Barriga F,Chavagnac V and Fouquet Y.2006.Mineralogy,geochemistry,and Nd isotope composition of the Rainbow hydrothermal field,Mid-Atlantic Ridge.Mineralium Deposita,41(1):52-67.
    Marques A F A,Barriga F J A S and Scott S D.2007.Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system:From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides.Marine Geology,245(1-4):20-39.
    Mcdermott J M,Ono S,Tivey M K,Seewald J S,Shank W Cand Solow A R.2015.Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes.Geochimica et Cosmochimica Acta,160:169-187.
    Melchert B,Devey C W,German C R,Lackschewitz K S,Seifert R,Walter M,Mertens C,Yoerger D R,Baker ET,Paulick H and Nakamura K.2008.First evidence for high-temperature off-axis venting of deep crustal/mantle heat:The Nibelungen hydrothermal field,southern MidAtlantic Ridge.Earth and Planetary Science Letters,275(1):61-69.
    Melekestseva I Y,Zaykov V V,Nimis P,Tret’yakov G A and Tessalina S G.2013.Cu-(Ni-Co-Au)-bearing massive sulfide deposits associated with mafic-ultramafic rocks of the Main Urals Fault,South Urals:Geological structures,ore textural and mineralogical features,comparison with modern analogs.Ore Geology Reviews,52:18-36.
    Michael P J,Thiede J,Dick H J,Goldstein S L and Graham D.2001.The Arctic Mid-Ocean ridge expedition(AMORE2001)seafloor spreading at the top of the world//AGUFall Meeting Abstracts.
    Nimis P,Zaykov V V,Omenetto P,Melekestseva I Y,Tesalina S G and Orgeval J J.2008.Peculiarities of some mafic-ultramafic-and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone,southern Urals.Ore Geology Reviews,33(1):49-69.
    Ohmoto H.1972.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Economic Geology,67(5):551-578.
    Ondréas H,Cannat M,Fouquet Y and Normand A.2012.Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas(Mid-Atlantic Ridge 13°N).Geochemistry Geophysics Geosystems,13(1):1-20.
    Ono S,Shanks III W C,Rouxel O J and Rumble D.2007.S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides.Geochimica et Cosmochimica Acta,71(5):1170-1182.
    Pedersen R B,Rapp H T,Thorseth I H,Lilley M D,Barriga F J A S,Baumberger T,Flesland K,Fonseca R,FruhGreen G L and Jorgensen S L.2010.Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge.Nature Communications,1:1-6.
    Pertsev A N,Bortnikov N S,Vlasov E A,Beltenev V E,Dobretsova I G and Ageeva O A.2012.Recent massive sulfide deposits of the Semenov ore district,MidAtlantic Ridge,13°31′N:Associated rocks of the oceanic core complex and their hydrothermal alteration.Geology of Ore Deposits,54(5):334-346.
    Rona P A.1984.Hydrothermal mineralization at seafloor spreading centers.Earth-Science Reviews,20(1):1-104.
    Rouxel O,Fouquet Y and Ludden J N.2004.Copper isotope systematics of the Lucky Strike,Rainbow,and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge.Economic Geology,99(3):585-600.
    Sakai H,des Marais D J,Ueda A and Moore J G.1984.Concentrations and isotope ratios of carbon,nitrogen and sulfur in ocean-floor basalts.Geochimica et Cosmochimica Acta,48(12):2433-2441.
    Seyfried W E,Foustoukos D I and Allen D E.2004.Ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges:Chemical and physical controls on p H,redox and carbon reduction reactions.Geophysical Monograph Series,148:267-284.
    Snow J,Hellebrand E,Jokat W and Muhe R.2001.Magmatic and hydrothermal activity in Lena Trough,Arctic Ocean.EOS,Transactions American Geophysical Union,82(17):193-198.
    Tao C H,Liang J,Zhang H T,Li H M,Egorov I V and Liao S L.2016.Hydrothermal activities around Dragon Horn Area(49.7°E)on ultraslow spreading Southwest Indian Ridge(SWIR)//AGU Fall Meeting Abstracts.
    Tao C H,Lin J,Guo S Q,Chen Y J,Wu G H,Han X Q,German C R,Yoerger D R,Zhou N,Li H M,Su X and Zhu J.2012.First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge.Geology,40(1):47-50.
    Tivey M A,Schouten H and Kleinrock M C.2003.A nearbottom magnetic survey of the mid-Atlantic Ridge axis at 26°N:Implications for the tectonic evolution of the TAG segment.Journal of Geophysical Research,108(B5):1-13.
    Tivey M K.2007.Generation of seafloor hydrothermal vent fluids and associated mineral deposits.Oceanography,20(1):50-65.
    Wallace P and Carmichael I S E.1992.Sulfur in basaltic magmas.Geochimica et Cosmochimica Acta,56(5):1863-1874.
    Wang Y J,Han X Q,Petersen S,Jin X L and Qiu Z Y.2014.Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field,Central Indian Ridge.Marine Geology,354:69-80.
    Yang J S,Zheng X H and Bai W J.1997.A preliminary study on genesis of the Dur’ngoi massive Cu-Co-Zn sulfide deposit hosted by the peridotite of A’nyemaqen ophiolite,Kunlun Mt.,China.Proceedings of the 30th International Geological Congress,9:382-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700