用户名: 密码: 验证码:
民用飞机壁板蒙皮及长桁布置结构优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Design of Panel Skin and Stringer Configuration for Civil Aircraft
  • 作者:方阳 ; 尹伟明 ; 孟庆功 ; 杨坤
  • 英文作者:FANG Yang;YIN Weiming;MENG Qinggong;YANG Kun;Shanghai Aircraft Design and Research Institute;
  • 关键词:机身壁板 ; 优化设计 ; 屈曲特征值 ; 轴向压缩 ; 有限元分析
  • 英文关键词:fuselage panel;;optimization design;;buckle eigenvalue;;axial compression;;finite element analysis
  • 中文刊名:MYFJ
  • 英文刊名:Civil Aircraft Design & Research
  • 机构:上海飞机设计研究院;
  • 出版日期:2017-06-30
  • 出版单位:民用飞机设计与研究
  • 年:2017
  • 期:No.125
  • 语种:中文;
  • 页:MYFJ201702015
  • 页数:7
  • CN:02
  • ISSN:31-1614/V
  • 分类号:75-81
摘要
机身壁板是飞机结构设计的重要承载组件,轻量化、高效率、共通性设计及优化是民机设计关注的重点。首先提出一种耦合ABAQUS的Buckle分析及ISIGHT优化的设计方法,利用自编子程序获取ABAQUS屈曲特征值,将特征值输入ISIGHT中计算临界屈曲载荷,同步更新变量参数及ABAQUS文件并提交计算,迭代分析直至优化流程结束。采用上述方法考虑轴向压缩载荷情况,以壁板整体重量最小为优化目标,疲劳应力值为约束条件,对单曲度金属机身壁板的蒙皮厚度,长桁数量及长桁截面厚度等几何参数进行优化。在满足壁板结构承载能力及总重量最小条件下,综合考虑结构载重比,临界应力及壁板加筋比,对比分析出一组最优参数,并与工程算法结果对比吻合程度较好,两者相对误差为3.73%。该优化思路实现FEA平台与优化工作一体化,可用于复合材料壁板设计及结构件减重优化工作,一定程度上可缩短零组件设计周期。
        Aircraft fuselage panel is one of the important load carrying members in structure design. The characteristics of lightweight,high efficiency,commonality and optimal design for civil aircraft have been attracted much attention in the past decades. In this study,an optimization methodology coupling ABAQUS buckle analysis and ISIGHT optimization was presented. The buckle eigenvalue was extracted from linear buckle analysis in ABAUQS using subroutine firstly,which was then input into ISIGHT for critical buckle load calculation. Meanwhile,the optimized parameters and ABAQUS input file were updated simultaneously for iterative analysis subsequently until the optimization procedure was finished. By utilizing the proposed method,the optimization study considering minimal weight as objective and fatigue stress as constraint respectively for metallic fuselage panel design was conducted under axial compression. The panel skin thickness,stringer number and cross section thickness of stringer were taken into account for optimization. Finally,the ratio of load-carrying to weight,critical stress and panel stiffening ratio were evaluated comprehensively to obtain optimal geometrical parameters both satisfying structural load carrying capacity and minimal weight. Besides,the optimal results were in reasonable agreement with theoretical results with a relative error of 3.73%.This method achieves the platform integration of FEA and optimization,which can provide further guidance for weight saving design of structural component and composite panel,therefore leading to time saving for aircraft component design in a certain degree.
引文
[1]孙为民,童明波,董登科,李新祥.加筋壁板轴压载荷下后屈曲稳定性试验研究[J].实验力学,2008,04:333-8.
    [2]何周理,张景新.铝锂合金飞机壁板压缩性能研究[J].中国民航大学学报,2012,03:51-5.
    [3]Tran KL,Douthe C,Sab K,Dallot J,Davaine L.Buckling of stiffened curved panels under uniform axial compression[J].J CONSTR STEEL RES,2014,103:140-7.
    [4]王东,徐元铭.曲线加筋壁板的优化设计框架系统研究[J].飞机设计,2015(05):17-22.
    [5]Chintapalli S,Elsayed MSA,Sedaghati R,Abdo M.The development of a preliminary structural design optimization method of an aircraft wing-box skin-stringer panels[J].AEROSP SCI TECHNOL,2010,14(3):188-98.
    [6]Sadeghifar M,Bagheri M,Jafari AA.Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load[J].THIN WALL STRUCT,2010,48(12):979-88.
    [7]Kumar KCN,Gupta G,Lakhera S,Shaikh A.Structural Optimization of Composite Stiffened Panel of a Transport Aircraft Wing using CAE Tools[J].Materials Today:Proceedings.2015,2(4-5):2588-94.
    [8]Badran SF,Nassef AO,Metwalli SM.Y-stiffened panel multi-objective optimization using genetic algorithm[J].THIN WALL STRUCT,2009,47(11):1331-1342.
    [9]王天龙.基于遗传算法的某大型飞机壁板结构优化设计[J].江苏科技信息,2015(19):48-50.
    [10]张琪.基于有限元的薄壁结构建模及尺寸优[J].强度与环境,2015(03):42-6.
    [11]叶广宁,邵青,何宇廷,冯宇.铝合金加筋板轴压屈曲稳定性的有限元分析[J].机械工程材料,2013(03):83-86.
    [12]Caseiro JF,Valente RAF,Andrade-Campos A,Yoon JW.Elasto-plastic buckling of integrally stiffened panels(ISP):An optimization approach for the design of cross-section profiles[J].THIN WALL STRUCT,2011,49(7):864-873.
    [13]Spagnoli A.Different buckling modes in axially stiffened conical shells[J].ENG STRUCT,2001.
    [14]李东.CDS0001:C919飞机金属材料选用目录[S].上海:上海飞机设计研究院,2015.02.15 F版。
    [15]牛春匀.实用飞机结构应力分析及尺寸设计[M].北京:航空工业出版社,2009.
    [16]童贤鑫.复合材料结构稳定性分析指南[M].北京:航空工业出版社,2002,9:6-10.
    [17]Yuming Mo,Dongyun Ge et al.Experiment and analysis of hat-stringer-stiffened composite curved panels under axial compression[J].Composite Structures,Volume123,2015,150-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700