用户名: 密码: 验证码:
新疆西天山卡特巴阿苏金矿床锆石U-Pb年龄、地球化学特征及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:U-Pb age and geochemistry of zircons from the Katebasu Au deposit, West Tianshan Mountains,Xinjiang, and their geological implications
  • 作者:蔡宏明 ; 刘桂萍 ; 尼加提·阿布都逊 ; 杨维忠 ; 邢令
  • 英文作者:CAI Hongming;LIU Guiping;NIJAT Abdurusul;YANG Weizhong;XING Ling;College of Geology and Mining Engineering, Xinjiang University;Geography Postdoctoral Research Station, Xinjiang University;No.1 Geological Survey Party, Xinjiang Bureau of Geology and Mineral Exploration and Mining;
  • 关键词:新疆西天山 ; 卡特巴阿苏金矿床 ; 锆石U-Pb年龄 ; 地球化学
  • 英文关键词:West Tianshan Mountains,Xinjiang;;Katebasu Au deposit;;zircon U-Pb age;;geochemistry
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:新疆大学地质与矿业工程学院;新疆大学地理学博士后科研流动站;新疆维吾尔自治区地质矿产勘查开发局/第一区域地质调查大队;
  • 出版日期:2019-05-15
  • 出版单位:地质通报
  • 年:2019
  • 期:v.38;No.288
  • 基金:新疆维吾尔自治区自然科学基金项目《新疆西天山卡特巴阿苏金矿年代学研究及其地质意义》(编号:2014211B011)
  • 语种:中文;
  • 页:ZQYD201905009
  • 页数:12
  • CN:05
  • ISSN:11-4648/P
  • 分类号:98-109
摘要
卡特巴阿苏大型金矿床位于新疆西天山中部那拉提北缘断裂带南侧,找矿前景较好。为查明矿区容矿岩浆岩的成因及其与矿床形成的联系,对主要矿石类型含金蚀变二长花岗岩和含金石英硫化物脉进行LA-MC-ICP-MS锆石U-Pb测年和地球化学研究。结果表明,锆石稀土元素显示较陡的左倾配分模式,具有明显的正Ce异常和负Eu异常,指示岩浆锆石成因。根据锆石Ce异常值,获得含矿岩石有关岩浆岩氧逸度对数值(Log(fo_2))为-29.2~5.1,指示岩浆具有较高的氧逸度,有利于金在岩体中初步富集。同时,氧逸度具有较大的变化范围,指示岩浆演化过程中,存在明显的上地壳混染。应用锆石Ti温度计,获得含金蚀变二长花岗岩锆石结晶温度为765~975℃,反映岩浆来自下地壳缺水条件下的部分熔融。含金石英硫化物脉锆石具有较低的结晶温度(641~823℃),可能与早期角闪石的分异结晶有关。以上2种矿石类型的锆石U-Pb年龄分别为350.4±1.6Ma和348.9±1.4Ma,代表了容矿二长花岗岩的结晶年龄。岩体结晶年龄早于前人报道的矿床成矿年龄,表明岩体侵位与成矿作用无直接关系。
        The Katebasu Au deposit, located on the southern side of North Nalati fault, is a large-sized deposit with great prospecting potential. In order to study the genetic relationship between intrusions developed in the study area and the Au deposit, the authors separated zircons from two main types of ore, i.e., Au-bearing altered monzogranite and quartz-sulfide vein, for U-Pb isotopic concentrations and trace element content by using LA-MC-ICP-MS. The results show that the chondrite-normalized REE patterns of zircons are characterized by HREE enrichment relative to LREE, with evident positive Ce and negative Eu anomalies,typical of magmatic zircons. The logarithm of oxygen fugacity(Log(fo_2)) calculated using δCe of the analyzed zircons is -29.2 to 5.1,suggesting high oxygen fugacity of magma, which is beneficial for preliminary enrichment of Au to provide metallogenic material.The highly variable oxygen fugacity might have suffered from significant contamination of the upper crust. Meanwhile, the application of the Ti-in-zircon thermometer exhibits high temperatures of 765~975℃ for zircons extracted from the Au-bearing altered monzogranite, indicative of dehydration melting of the lower crust. The zircons from Au-bearing quartz-sulfide vein have relatively lower crystallization temperatures of 641~823℃, suggesting crystallization of amphibole before zircon. The obtained zircon U-Pb ages of 350.4 ± 1.6 Ma for altered monzogranite and 348.9 ± 1.4 Ma for quartz-sulfide vein are interpreted as the magma crystallization age of the monzogranite, which is the main host rock of the deposit. The crystallization ages are earlier than previously reported metallogenic age, probably suggesting little relationship between the monzogranite formation and metallization of the Katebasu Au deposit.
引文
[1]Wu Y B,Zheng Y F.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin,2004,49(15):1554-1569.
    [2]Hu F F,Fan H R,Yang J H,et al.Hydrothermal U-Pb zircon Shrimp dating ore-forming age of the lode gold-quartz-sulphide veins in Rushan,Jiaodong Peninsula[J].Chinese Science Bulletin,2004,49(15):1629-1636.
    [3]Kerrich R.Hydrothermal zircon and baddeleyite in Vald'Or Archean mesothermal gold deposits:Characteristics,compositions,and fluid-inclusion properties,with implications for timing of primary gold mineralization[J].Canadia Journal of Earth Sciences,1993,30(2):2334-2351.
    [4]Li H,Watanabe K,Yonezu K.Zircon morphology,geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit,South China:Implications for the magmatic evolution and mineralization processes[J].Ore Geology Reviews,2014,60(3):14-35.
    [5]Belousova E,Griffin W,O'reilly S Y,et al.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143(5):602-622.
    [6]Wang Q,Zhu D C,Zhao Z D,et al.Magmatic zircons from I-,S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study[J].Journal of Asian Earth Sciences,2012,53(2):59-66.
    [7]Rubatto D.Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J].Chemical Geology,2002,184(1/2):123-138.
    [8]Grimes C B,John B E,Kelemen P B,et al.Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J].Geology,2007,35(7):643-646.
    [9]Nardi L V S,Formoso M L L,Jarvis K,et al.REE,Y,Nb,U,and Th contents and tetrad effect in zircon from a magmatichydrothermal F-rich system of Sn-rare metal-cryolite mineralized granites from the Pitinga Mine,Amazonia,Brazil[J].Journal of South American Earth Sciences,2012,33(1):34-42.
    [10]Trail D,Watson E B,Tailby N D.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J].Geochimica et Cosmochimica Acta,2012,97:70-87.
    [11]Hoskin P W O.Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia[J].Geochimica et Cosmochimica Acta,2005,69(3):637-648.
    [12]Kong D X,Xu J F,Chen J L.Oxygen isotope and trace element geochemistry of zircons from porphyry copper system:Implications for Late Triassic metallogenesis within the Yidun Terrane,southeastern Tibetan Plateau[J].Chemical Geology,2016,441:148-161.
    [13]薛春纪,赵晓波,莫宣学,等.西天山“亚洲金腰带”及其动力背景和成矿控制及找矿[J].地学前缘,2014,21(5):128-155.
    [14]冯博,薛春纪,赵晓波,等.西天山卡特巴阿苏大型金铜矿赋矿二长花岗岩岩石学、元素组成和时代[J].地学前缘,2014,21(5):187-195.
    [15]张祺,薛春纪,赵晓波,等.新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代[J].中国地质,2015,42(3):411-437.
    [16]杜亚龙,李智明,王继斌,等.新疆西天山卡特巴阿苏金矿黄铁矿地球化学特征及地质意义[J].西北地质,2017,50(1):239-248.
    [17]杨维忠,薛春纪,赵晓波,等.新疆西天山新发现新源县卡特巴阿苏大型金铜矿床[J].地质通报,2013,32(10):1613-1620.
    [18]邢令,杨维忠,藏梅,等.新疆卡特巴阿苏金铜矿区二长花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质,2015,33(1):1-6.
    [19]刘云华,李真,莫宣学,等.西天山卡特巴阿苏矽卡岩型-破碎带蚀变岩型金铜矿床地质特征[J].吉林大学学报(地球科学版),2016,46(5):1368-1382.
    [20]Dong L L,Wan B,Yang W Z,et al.Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan,China and its geological significance[J].Ore Geology Reviews,2018,100:99-110.
    [21]韩继全,杨维忠,林泽华,等.新疆卡特巴阿苏金矿床含矿岩石及围岩地球化学特征与构造环境简析[J].新疆地质,2016,34(4):496-503.
    [22]高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
    [23]邢令,藏梅,杨维忠,等.新疆卡特巴阿苏金铜矿床全岩矿化小岩体的发现及地质意义[J].新疆地质,2016,34(2):1-7.
    [24]高永伟,张振亮,王志华,等.西天山卡特巴阿苏金矿床成矿年代学及其地质意义--来自绢云母40Ar-39Ar同位素年龄证据[J].地质与勘探,2015,51(5):805-815.
    [25]邢令,薛春纪,藏梅,等.西天山卡特巴阿苏金铜矿区成矿元素分布及其勘查意义[J].矿床地质,2018,37(1):105-115.
    [26]侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    [27]Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1/2):34-43.
    [28]Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from Mantle Xenoliths[J].Journal of Petrology,2010,51(1/2):537-571.
    [29]Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,1(15):1535-1546.
    [30]Ludwig K R.ISOPLOT/Ex,version3:A geochronological toolkit for microsoft excel[M].Berkeley:Berkeley Geochronology Center,California,2003.
    [31]McDonough W F,Sun S S.The composition of the Earth[J].Chemical Geology,1995,120(3/4):223-253.
    [32]El-Bialy Z M,Ali K A.Zircon trace element geochemical constraints on the evolution of the Ediacaran(600-614Ma)postcollisional Dokhan volcanics and younger granites of SE Sinai,NEArabian-Nubian Shield[J].Chemical Geology,2013,360/361(1):54-73.
    [33]Whitehouse M J,Kamber B S.On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation[J].Earth and Planetary Science Letters,2002,204(3/4):333-346.
    [34]周金胜,孟祥金,藏文栓,等.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J].岩石学报,2013,29(11):3755-3766.
    [35]Pettke T,Audétat A,Schaltegger U,et al.Magmatic to hydrothermal crystallization in the W-Sn mineralized Mole Granite(NSW,Australia):Part II:Evolving zircon and thorite trace element chemistry[J].Chemical Geology,2005,220(3/4):191-213.
    [36]Lawrie K C,Mernagh T P,Ryan C G,et al.Chemical fingerprinting of hydrothermal zircons:an example from the Gidginbung high sulphidation Au-Ag-(Cu)deposit,New South Wales,Australia[J].Proceedings of the Geologists'Association,2007,118(1):37-46.
    [37]Valley P M,Hanchar J M,Whitehouse M J.Direct dating of Fe oxide-(Cu-Au)mineralization by U/Pb zircon geochronology[J].Geology,2009,37(3):223-226.
    [38]Fu B,Mernagh T P,Kita N T,et al.Distinguishing magmatic zircon from hydrothermal zircon:A case study from the Gidginbung high-sulphidation Au-Ag-(Cu)deposit,SE Australia[J].Chemical Geology,2009,259(3/4):131-142.
    [39]Yang W B,Niu H C,Shan Q,et al.Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite:implications for Zr-REE-Nb mineralization[J].Mineralium Deposita,2014,49(4):451-470.
    [40]赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘,2010,17(1):267-286.
    [41]Shen P,Hattori K,Pan H,et al.Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt[J].Economic Geology,2015,110(7):1861-1878.
    [42]辛洪波,曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J].矿物学报,2008,28(2):152-160.
    [43]Sun W D,Arculus R J,Kamenetsky V S,et al.Release of goldbearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004,431(7011):975-978.
    [44]Carroll M R,Rutherford M J.Sulfur speciation in hydrous experimental glasses of varying oxidation state;results from measured wavelength shifts of sulfur X-rays[J].American Mineralogist,1988,73(7/8):845-849.
    [45]芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491-500
    [46]Watson E B,Wark D A,Thomas J B.Crystallization thermometers for zircon and rutile[J].Contributions to Mineralogy and Petrology,2006,151(4):413.
    [47]Baldwin J A,Brown M,Schmitz M D.First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism[J].Geology,2007,35(4):295-298.
    [48]Carley T L,Miller C F,Wooden J L,et al.Iceland is not a magmatic analog for the Hadean:Evidence from the zircon record[J].Earth and Planetary Science Letters,2014,405(1/2):85-97.
    [49]Harrison T M,Watson E B,Aikman A B.Temperature spectra of zircon crystallization in plutonic rocks[J].Geology,2007,35(7):635.
    [50]Fu B,Page F Z,Cavosie A J,et al.Ti-in-zircon thermometry:applications and limitations[J].Contributions to Mineralogy and Petrology,2008,156(2):197-215.
    [51]Xie J C,Fang D,Yan J,et al.Petrogenesis of Mesozoic dioritic rocks and Cu-Au mineralization in Tongling region:In-situ zircon geochemical constraints[J].Acta Geologica Sinica,2014,88(s2):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700