用户名: 密码: 验证码:
滑动构造区极松散煤巷围岩大变形控制机制试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on large deformation control mechanism of surrounding rock of extremely loose coal roadway in gliding tectonics area
  • 作者:王兴开 ; 谢文兵 ; 荆升国 ; 苏致立 ; 李路恒 ; 鹿利恒
  • 英文作者:WANG Xingkai;XIE Wenbing;JING Shengguo;SU Zhili;LI Luheng;LU Liheng;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology;School of Mines,China University of Mining and Technology;
  • 关键词:采矿工程 ; 重力滑动构造 ; 极松散煤体 ; 相似模拟试验 ; 大变形 ; 围岩控制
  • 英文关键词:mining engineering;;gravity gliding tectonics;;extremely loose coal;;physical simulation;;large deformation;;surrounding rock control
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:中国矿业大学煤炭资源与安全开采国家重点实验室;中国矿业大学矿业工程学院;
  • 出版日期:2018-02-01
  • 出版单位:岩石力学与工程学报
  • 年:2018
  • 期:v.37;No.335
  • 基金:中国矿业大学煤炭资源与安全开采国家重点实验室自主研究课题资助项目(SKLCRSM15X01);; 国家重点研发计划项目(2017YFC0603001)~~
  • 语种:中文;
  • 页:YSLX201802006
  • 页数:13
  • CN:02
  • ISSN:42-1397/O3
  • 分类号:56-68
摘要
为研究滑动构造区极松软煤层巷道围岩大变形控制机制,综合运用现场调研、理论分析、数值模拟和物理模拟试验等方法,分析极松软煤层巷道支护–围岩系统失稳机制,自主设计大比例尺真三维锚固模型试验系统,并对比研究巷道在低预应力锚杆配合钢塑网护表、高预应力锚杆配合钢塑网与钢筋编织网联合护表2种围岩控制条件下,经受掘进、采动影响过程中围岩应力、锚杆锚固力、围岩体变形的演化规律。结果表明:(1)巷道围岩失稳模式为:锚杆之间松软煤体是锚固作用薄弱区,在围岩载荷作用下首先发生破坏,逐渐产生极不均匀大变形,继而引起锚固围岩系统整体渐进失稳。(2)掘进影响阶段,巷道围岩变形量较小,在较差的围岩控制条件下,巷道浅部0~1.64 m范围围岩径向应力、切向应力出现不同程度降低;而支护初期施加较高的锚杆预紧力和护表强度,可以直接有效地提高巷道浅部围岩的应力水平,使得锚固体具有较强承载能力,巷道浅部围岩应力降低程度相对减小,且围岩径向应力出现降低的范围由0~1.64 m减小到0~1.24 m。经受采动影响后,锚固围岩应力增加量相对提升25.0%~51.8%。(3)采动影响作用下巷道围岩迅速产生强烈变形,尤其锚杆之间围岩产生类似"锥形"的极不均匀大变形区域。在较差锚固作用条件下,浅部围岩不断破碎、局部流失,锚杆轴力急剧升高之后缓慢下降;但在较好的锚固条件下,巷道围岩完整性良好,锚杆之间围岩出现极不均衡大变形的范围明显减小,锚杆轴力急剧升高后继续稳步增加,巷道围岩整体位移量也相对减少31.9%。
        In order to study the large deformation control mechanism of surrounding rock of extremely loose coal roadway in gliding tectonics area,a large scale three-dimensional system of anchorage model was designed and the failure mechanism of support-surrounding rock system in coal roadway was analyzed by employing the combined method of field investigation,theoretical analysis,numerical simulation and physical simulation.Two laboratory physical models,with different control conditions to surrounding rock of roadway,were built respectively to understand the characteristics of stress development in entry surrounding rock,anchoring force of bolts and deformation of entry surrounding rock during roadway driving and mining.Two kinds of supports of bolting plus mesh were used in the laboratory test.One is the low tensioned bolts plus the steel-plastic mesh,the another one is the high tensioned bolts plus the combined meshes including the steel-plastic mesh and metal woven mesh.The results indicate that the supporting effect of bolts in the soft surrounding rock is weak,leading to the failure of surrounding rock in a short time under pressures,and then the large deformation appears gradually,causing the instability of the whole rock body surrounding the roadway.Upon the excavation of roadway forwardly,the radial tangential stresses in the shallow rock around roadway are reduced to different degrees.While for the roadway supported by high tensioned bolts and surface protection of high strength,the stresses in the shallow rock are obviously raised and the range of surrounding rock where the radial stress decreases is reduces is 0–1.64 m to 0–1.24 m.Besides,the stress increment in anchored surrounding rock is increased by 25%–51.8% after the influence of mining.Under the influence of mining,the deformation in the surrounding rock of roadway has an acceleration phase,in particular,the non-uniform large deformation in the surrounding rock between the bolts occurs.With the poor anchorage conditions,the shallow surrounding rock is constantly broken and partially dropped.Furthermore,the axial loads of bolt decreases slowly after a sharp rise.However,the rock under the second control conditions remains intact,and the axial loads of bolts increases steadily during the mining.Moreover,the surface displacement of roadway in the second test model is 31.9% less than that in the first one.
引文
[1]琚宜文,姜波,王桂樑,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005:22–39.(JU Yuwen,JIANG Bo,WANG Guiliang,et al.Tectonic coal structure and reservoir property[M].Xuzhou:China University of Mining and Science Press,2005:22–39.(in Chinese))
    [2]汤友谊,孙四清,田高岭.测井曲线计算机识别构造软煤的研究[J].煤炭学报,2005,30(3):293–296.(TANG You Yi,SUN Siqing,TIAN Gaoling.Study of computer identifying on tectonic soft coal with well log[J].Journal of China Coal Society,2005,30(3):293–296.(in Chinese))
    [3]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649–664.(KANG Hongpu,WANG Jinhua,LIN Jian.Case study of rock bolting in coal mine roadways[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(4):649–664.(in Chinese))
    [4]宗义江,韩立军,郜建明.极破碎软岩巷道失稳机制与动态迭加耦合支护技术研究[J].采矿与安全工程学报,2013,30(3):355–362.(ZONG Yijiang,HAN Lijun,GAO Jianming.Instability mechanisms and dynamic coupling support in extremely fractured and soft rock roadway[J].Journal of Mining and Safety Engineering,2013,30(3):355–362.(in Chinese))
    [5]孟庆彬,韩立军,乔卫国,等.泥质弱胶结软岩巷道变形破坏特征与机制分析[J].采矿与安全工程学报,2016,33(6):1 014–1 022.(MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Deformation failure characteristics and mechanism analysis of muddy weakly cemented soft rock roadway[J].Journal of Mining and Safety Engineering,2016,33(6):1 014–1 022.(in Chinese))
    [6]薛华俊.大断面软弱煤帮巷道注浆体力学特性与控制技术研究[博士学位论文][D].北京:中国矿业大学(北京),2016.(XUE Huajun.Research on mechanical properties and control technology of grouted surrounding rock of large section roadway with soft and weak coal sides[Ph.D.Thesis][D].Beijing:China University of Mining and Science(Beijing),2016.(in Chinese))
    [7]李金旺.破碎煤岩注浆材料研发及其在圣鑫煤矿的应用[硕士学位论文][D].焦作:河南理工大学,2015.(LI Jinwang.Fractured coal grouting material research and application in Shengxin coal mine[M.S.Thesis][D].Jiaozuo:Henan Polytechnic University,2015.(in Chinese))
    [8]荆升国,王其洲,陈杰.深部“三软”煤巷棚–索强化控制机制研究[J].采矿与安全工程学报,2014,31(6):938–944.(JING Shengguo,WANG Qizou,CHEN Jie.Strengthening control mechanism with support and cable for in“three-soft”coal roadway during deep mining[J].Journal of Mining and Safety Engineering,2014,31(6):938–944.(in Chinese))
    [9]柏建彪,王襄禹,贾明魁,等.深部软岩巷道支护原理及应用[J].岩土工程学报,2008,30(5):632–635.(BAI Jianbiao,WANG Xiangyu,JIA Mingkui,et al.Theory and application of supporting in deep soft roadways[J].Chinese Journal of Rock Mechanics and Engineering,2008,30(5):632–635.(in Chinese))
    [10]KANG H P.Support technologies for deep and complex roadways in underground coal mines:a review[J].International Journal of Coal Science and Technology,2014,1(3):227–261.
    [11]曹召丹.豫西煤田地质构造特征及其对瓦斯赋存的控制[硕士学位论文][D].徐州:中国矿业大学,2014.(CAO Shaodan.Geological tectonic feature of the western henan coalfield and its control action on gas occurrence:a case study of the Xinfeng coal mine[M.S.Thesis][D].Xuzhou:China University of Mining and Science,2014.(in Chinese))
    [12]宣德全.构造煤应力承载过程中的变形破坏特征实验研究[硕士学位论文][D].焦作:河南理工大学,2012.(XUAN Dequan.Test study on deformation and damage characteristics of tectonic coal in the process of stress bearing[M.S.Thesis][D].Jiaozuo:Henan Polytechnic University,2012.(in Chinese))
    [13]宫伟东,张瑞林,郭晓洁,等.构造煤原煤样制作及渗透性试验研究[J].煤炭科学技术,2017,45(3):89–93,122.(GONG Dongwei,ZHANG Ruilin,GUO Xiaojie,et al.Experiment study on raw coal sample preparation and permeability of structure coal[J].Coal Science and Technology,2017,45(3):89–93,122.(in Chinese))
    [14]荆升国,鹿利恒,江静.滑动构造区厚煤层巷道锚固结构形成机制研究与应用[J].采矿与安全工程学报,2017,34(5):928–932.(JING Shengguo,LU Liheng,JIANG Jing.Research on formation mechanism and application of anchor structure for thick coal roadway in sliding structure zone[J].Journal of Mining and Safety Engineering,2017,34(5):928–932.(in Chinese))
    [15]杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1 842–1 853.(YANG Shuangsuo.The surrounding rock control theory of coal roadway[J].Journal of China Coal Society,2010,35(11):1 842–1 853.(in Chinese))
    [16]康红普,姜铁明,高富强.预应力锚杆支护参数的设计[J].煤炭学报,2008,33(7):721–726.(KANG Hongpu,JIANG Tieming,GAO Fuqiang.Design for pretensioned bolt parameters[J].Journal of China Coal Society,2008,33(7):721–726.(in Chinese))
    [17]康红普,姜鹏飞,蔡嘉芳.锚杆支护应力场测试与分析[J].煤炭学报,2014,39(8):1 521–1 529.(KANG Hongpu,JIANG Pengfei,CAI Jiafang.Test and analysis on stress fields caused by rock bolting[J].Journal of China Coal Society,2014,39(8):1 521–1 529.(in Chinese))
    [18]林健,孙志勇.锚杆支护金属网力学性能与支护效果实验室研究[J].煤炭学报,2013,38(9):1 542–1 548.(LIN Jian,SUN Zhiyong.Laboratory studies on mechanical performance and supporting function of bolt metal meshes[J].Journal of China Coal Society,2013,38(9):1 542–1 548.(in Chinese))
    [19]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998:64–66.(LU Shiliang,TANG Lei,YANG Xin′an.Anchor and anchor technology[M].Beijing:Coal Industry Publishing House,1998:64–66.(in Chinese))
    [20]屠世浩,马文顶,万志军,等.岩层控制的实验方法与实测技术[M].徐州:中国矿业大学出版社,2010:10–15+65–76.(TU Shihao,MA Wending,WAN Zhijun,et al.Experimental methods and measurement technology[M].Xuzohu:China University of Mining and Science Press,2010:10–15+65–76.(in Chinese))
    [21]陈坤福.深部巷道围岩破裂演化过程及其控制机制研究与应用[博士学位论文][D].徐州:中国矿业大学,2009.(CHEN Kunfu.Failure evolution and control mechanism of surrounding rock of deep roadways and its application[Ph.D.Thesis][D].Xuzohu:China University of Mining and Science,2009.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700