用户名: 密码: 验证码:
着水姿态对大型水陆两栖飞机着水性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of pitch angle on water-entry performance of large-scale amphibian aircraft hull
  • 作者:孙丰 ; 吴彬 ; 廉滋鼎 ; 王明振 ; 褚林塘
  • 英文作者:SUN Feng;WU Bin;LIAN Zi-ding;WANG Ming-zhen;CHU Lin-tang;Key Aviation Scientific and Technological Laboratory of High-Speed Hydrodynamic;AVIC Special Vehicle Research Institute;China Aviation Industry General Aircraft Co., Ltd.;
  • 关键词:水陆两栖飞机 ; 着水姿态 ; 着水性能 ; 着水载荷 ; 运动响应
  • 英文关键词:amphibian aircraft;;water-entry pitch angle;;water-entry performance;;water load;;motion response
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:高速水动力航空科技重点实验室;中航工业特种飞行器研究所;中航通用飞机有限责任公司;
  • 出版日期:2019-04-15
  • 出版单位:船舶力学
  • 年:2019
  • 期:v.23;No.186
  • 基金:民用飞机专项研究(MJ-2015-F-028);; 航空科学基金(2016ZA05002)
  • 语种:中文;
  • 页:CBLX201904003
  • 页数:8
  • CN:04
  • ISSN:32-1468/U
  • 分类号:23-30
摘要
针对着水姿态对水陆两栖飞机船体着水性能的影响,通过单船身(机身)模型着水试验与仿真,分析着水载荷和运动响应,单船身模型可排除气动力及复杂的水面效应等因素引起的试验与仿真的差异。结果表明仿真与试验结果一致性较好,压力分布满足设计要求;初始姿态角对压力分布及加速度的时历变化影响不大,但艉部着水前期姿态角会出现减小的现象;加速度和姿态角峰值随着初始姿态角的增大会出现明显的波谷型变化。综合看来,该型水陆两栖飞机着水性能在6°-8°姿态角范围内较优,7°最佳。
        For the influence of pitch angle on water-entry performance of amphibian aircraft hull, analysis of water load and motion response is carried out by model test and simulation of the single hull(fuselage). The single hull model can exclude the difference of model test and simulation caused by the aerodynamic and complex surface effects. The simulation results show good agreement with the experimental. The pressure distribution meets the design requirements. The initial pitch angle has little effect on the pressure distribution and time history of acceleration, but the pitch angle decreases firstly at the early stage of stern impact. The peaks of acceleration and pitch angle change significantly in trough type with the increasing of the initial pitch angle. In summary, the water-entry performance of the amphibious aircraft is superior when the pitch angle lies in 6°-8°, and 7° is the best one.
引文
[1]彭勇.对我国发展水上飞机的展望[J].交通与运输,2010,26(5):25-27.Peng Yong.Prospects for the development of China’s water plane[J].Traffic and Transportation,2010,26(5):25-27.
    [2]Mayo W L.Analysis and modification of theory for impact seaplanes on water[R].NACA TN No.1008,1945.
    [3]Mayo W L.Theoretical and experimental dynamic loads for a prismatic float having an angle of dead rise of 22.5°[R].NACA RB No.L5F15,1945.
    [4]Milwitzky B A.Theoretical investigation of hydrodynamic impact loads on scalloped-bottom seaplanes and comparisons with experiment[R].NACA Rep.867,1947.
    [5]Milwitzky B A.Generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by V-bottom seaplanes during step-landing impacts[R].NACA TN 1516,1948.
    [6]Steiner M F.Analysis of planning data for use in predicting hydrodynamic impact loads[R].NACA TN 1694,1948.
    [7]Robert F S.The application of planning characteristics to the calculation of the water-landing loads and motions of seaplanes of arbitrary constant cross section[R].NACA TN No.2812,1952.
    [8]Robert F S.A procedure for computing the pressure distribution on flat and V-bottom prismatic water surfaces during impact or planning[R].NACA TN 2583,1951.
    [9]Miller R W.Hydrodynamic impact loads in smooth water for a prismatic float having an angle of dead rise of 30°[R].NACATN No.1325,1947.
    [10]Miller R W.Theoretical and experimental investigation of a prismatic float having freedom in trim[R].Washington D.C.:National Advisory Committee for Aeronautics,1952.
    [11]龚丞,朱仁传,缪国平,等.基于CFD的高速船甲板上浪载荷的工程计算方法[J].船舶力学,2014,18(5):524-531.Gong Cheng,Zhu Renchuan,Miao Guoping,et al.A numerical method of the simulation of green water on the deck of a vessel[J].Journal of Ship Mechanic,2014,18(5):524-531.
    [12]王文华,黄一,王言英,等.弹性楔形体各状态参数对入水运动性能的影响[J].船舶力学,2014,18(11):1320-1330.Wang Wenhua,Huang Yi,Wang Yanying,et al.Effect of status parameters for elastic wedge on dynamic performance of water-entry[J].Journal of Ship Mechanics,2014,18(11):1320-1330.
    [13]陈立霞,汪正中,马玉杰.楔形底部直升机着水载荷和压力分布的估算方法研究[J].直升机技术,2014,179:5-9.Chen Lixia,Wang Zhengzhong,Ma Yuji.Estimation method for the distribution of ditching loads and pressures for helicopters with V bottom[J].Helicopter Technique,2014,179:5-9.
    [14]徐文岷,李凯.民用飞机弹性结构水上迫降试验载荷研究[J].航空学报,2014,35(4):1012-1018.Xu Wenmin,Li Kai.Research on civil aircraft elastic structure ditching test load[J].Acta Aeronautica et Astronautuca Sinica,2014,35(4):1012-1018.
    [15]Guo Baodong,Liu Peiqing,Qu Qiulin.Effect of pitch angle on initial stage of a transport airplane ditching[J].Chinese Journal of Aeronautics,2013,26(1):17-26.
    [16]骆寒冰,张智,王辉.三维加筋板楔形体结构水弹性砰击的ALE数值模拟研究[J].船舶力学,2013,17(1):84-91.Luo Hanbing,Zhang Zhi,Wang Hui.Hydroelastic simulation of one 3D free-drop wedge with stiffened panels using ALEmethod[J].Journal of Ship Mechanics,2013,17(1):84-91.
    [17]中国民用航空规章第25部运输类飞机适航标准[S].中国民用航空局,2009.CCAR-25,Airworthness standard of transport aircraft[S].CAAC,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700