用户名: 密码: 验证码:
全铝无接触热阻冷凝器的建模与性能测试
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Performance Testing of Aluminum Non-contact Thermal Resistance Condensers
  • 作者:万锐 ; 王义春 ; Revaz ; Kavtaradze ; 贾润泽
  • 英文作者:WAN Rui;WANG Yichun;Revaz Kavtaradze;JIA Runze;School of Mechanical Engineering,Beijing Institute of Technology;
  • 关键词:无接触热阻冷凝器 ; 数学模型 ; 空气焓值法 ; 换热量 ; 气侧压降 ; 冷凝器性能
  • 英文关键词:non-contact thermal resistance condenser;;numerical model;;air enthalpy test;;heat exchange capacity;;air-side pressure drop;;performance of condenser
  • 中文刊名:HNLG
  • 英文刊名:Journal of South China University of Technology(Natural Science Edition)
  • 机构:北京理工大学机械与车辆学院;
  • 出版日期:2019-01-15
  • 出版单位:华南理工大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.388
  • 基金:广东省教育部产学研结合项目(200913090300301)~~
  • 语种:中文;
  • 页:HNLG201901014
  • 页数:8
  • CN:01
  • ISSN:44-1251/T
  • 分类号:118-125
摘要
采用分布参数法建立了空调系统全铝无接触热阻冷凝器的稳态计算模型,并用空气焓值法对全铝无接触热阻冷凝器试件进行了性能测试实验;通过与实验结果的对比,验证了该数学模型的计算精度——在相同工况下,该冷凝器计算模型的换热量最大误差为4.8%,气侧压降最大误差为6.7%.用建立的模型分析了冷凝器结构尺寸变化对其换热性能和压降的影响.采用冷凝器综合性能因子ε来综合考虑换热量和气侧压降对冷凝器性能的影响.结果表明:全铝冷凝器的换热量随内流道宽b′的增大而减小;全铝冷凝器的换热量随翅片管数n的增大而增大;全铝冷凝器换热量随翅片管宽度a的增大而增大;当翅片管宽a为40 mm,翅片管数n为22,内流道宽度b′为1.4 mm时,冷凝器的换热量最大,为3 423.2 W,空气压降为19.15 Pa;全铝冷凝器换热系数随着翅片管宽的a的增大先增大后减小,在翅片管宽a为38 mm时取得最大值;换热系数随着翅片管数n的增大而增大;冷凝器综合性能因子ε随着翅片管宽a的增大先增大后减小,随着翅片管数的增大而增大.
        The steady state calculation model of aluminum non-contact thermal resistance condensers for air conditioning system was established by using distributed parameter method,and the performance of the all-aluminum non-contact thermal resistance condensers was tested with air enthalpy method. The calculation accuracy of the numerical model is verified by comparison with the experimental results. The results show that,under the same working conditions,the maximum error of heat exchange of the condenser is 4.8%,and the maximum error of air side pressure drop is 6.7%. The influence of condenser structure on its heat exchange performance and pressure drop was analyzed,and the comprehensive performance factor ε was employed to study the influence both of the heat exchange and the pressure drop of the air side on the performance of the condenser. The results show that the heat exchange capacity of the aluminum condenser decreases with the increase of the inner flow channel width b′;the heat exchange capacity of the aluminum condenser increases with the increase of the finned tube number n;the heat exchange capacity of the aluminum condenser increases with the increase of the finned tube width a;when the finned tube width a is 40 mm,the finned tube number n is 22,and the inner flow channel width b′ is 1.4 mm,the condenser's heat exchange reaches the maximum,3 423.2 W,and the air pressure drop is 19.15 Pa;the heat exchange coefficient of the aluminum condenser increases first and then decreases with the increase of the finned tube width a,and the maximum value is obtained when the finned tube width a is 38 mm;the heat exchange coefficient increases with the increase of finned tube number n;the overall performance factor ε of the condenser increases first and then decreases with the increase of the finned tube width a,and increases with the increase of the finned tube number n.
引文
[1] 王瑞,王义春,冯朝卿,等.空调全铝新型换热器结构优化与性能研究 [J].北京理工大学学报,2012,32(7):699- 704.WANG Rui,WANG Yi-chun,FENG Chao-qing,et al.StructuraI optimization and performance test about Aluminum heat exchanger of air-condition [J].Transactions of Beijing Institute of Technology,2012,32(7):699- 704.
    [2] KHAN M G,FARTAJ A.A review on microchannel heat exchangers and potential applications [J].International Journal of Energy Research,2011,35(7):553- 582.
    [3] HOSOZ M,DIREK M.Performance evaluation of an integrated automotive air conditioning and heat pump system [J].Energy Conversion and Management,2006,47(5):545- 559.
    [4] QI Z G,CHEN J P,RADERMACHER R.Investigating performance of new mini-channel evaporators [J].Applied Thermal Engineering,2009,29(17/18):3561- 3567.
    [5] WANG S F,CHENG S,YU H M,et al.Experimental investigation of Al-Cu composed tube-fin heat exchangers for air conditioner [J].Experimental Thermal and Fluid Science,2013,51:264- 270.
    [6] 王义春,杨英俊,姚仲鹏.整体式无接触热阻散热器传热元件的研究 [J].车用发动机,2002(6):41- 43.WANG Yi-chun,YANG Ying-jun,YAO Zhong-peng.Study on the heat transfer components without touch thermal resistance whole processing type radiator [J].Vehicle Engine,2002 (6):41- 43.
    [7] 荣俊,王义春,王瑞君,等.无接触热阻全铝换热器空调系统制冷性能研究 [J].制冷学报,2014,35(4):99- 103.RONG Jun,WANG Yi-chun,WANG Rui-jun,et al.Cooling performance of air conditioning systems with non-contact thermal resistance Aluminumheat exchanger [J].Journal of Refrigeration,2014,35(4):99- 103.
    [8] ZHANG X,WANG Y,CANG P,et al.Experimental investigation of thermal hydraulic performance of heat exchan-gers with different Reynolds numbers on both air-side and water-side [J].Applied Thermal Engineering,2016,99:1331- 1339.
    [9] JIA R Z,WANG Y C,KANG H F,et al.Research on the heat transfer and flow characteristics of a new type of aluminum noncontact thermal resistance finned tubes [J].Journal of Energy Engineering,2016,143(4):04016065.
    [10] ZHANG X L,WANG Y C,ZHAO D W,et al.Improved thermal performance of heat exchanger with TiO2 nano-particles coated on the surfaces [J].Applied Thermal Engineering,2017,112:1153- 1162.
    [11] SHAO L L,YANG L,ZHANG C L,et al.Numerical modeling of serpentine microchannel condensers [J].International Journal of Refrigeration,2009,32(6):1162- 1172.
    [12] SUN L,YANG L,SHAO L L,et al.Overall thermal performance oriented numerical comparison between elliptical and circular finned-tube condensers [J].International Journal of Thermal Sciences,2015,89:234- 244.
    [13] WANG T,GU B,WU B,et al.Modeling for multi-pass parallel flow condenser with the effect of refrigerant mal-distribution [J].International Journal of Refrigeration,2015,60:234- 246.
    [14] YIN X W,WANG W,PATNAIK V,et al.Evaluation of microchannel condenser characteristics by numerical simulation [J].International Journal of Refrigeration,2015,54:126- 141.
    [15] DATTA S P,DAS P K,MUKHOPADHYAY S.Perfor-mance of a condenser of an automotive air conditioner with maldistribution of inlet air:simulation studies and its experimental validation [J].International Journal of Heat and Mass Transfer,2016,98:367- 379.
    [16] VU P Q,KWANG-LL C,JONG-TAEK O,et al.Flow condensing heat transfer of R410A inside a micro-fin tube [J].Energy Procedia,2017,105:4878- 4883.
    [17] KIM S M,MUDAWAR I.Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow [J].International Journal of Heat and Mass Transfer,2013,56(1):238- 250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700