用户名: 密码: 验证码:
NbCr_2/Nb合金高温蠕变行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High temperature creep behavior of NbCr_2/Nb alloy
  • 作者:邓莉萍 ; 鲁世强 ; 汤斌兵 ; 雷志立
  • 英文作者:DENG Li-ping;LU Shi-qiang;TANG Bin-bing;LEI Zhi-li;School of Materials Science and Engineering,Nanchang Hongkong University;College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics;School of Aeronautical Manufacturing Engineering,Nanchang Hongkong University;Institute for Advanced Study,Nanchang University;
  • 关键词:Nb基合金 ; Laves相 ; 蠕变 ; 位错 ; 层错/孪晶
  • 英文关键词:Nb-based alloy;;Laves phase;;creep;;dislocations;;stacking fault/twinning
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:南昌航空大学材料科学与工程学院;南京航空航天大学材科科学与技术学院;南昌航空大学航空制造工程学院;南昌大学高等研究院;
  • 出版日期:2019-02-28
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26
  • 基金:国家自然科学基金资助项目(51074092);; 江西省自然科学基金资助项目(20161BAB206113);; 江西省教育厅落地计划项目(KJLD14056);江西省教育厅科技计划项目(GJJ160677)
  • 语种:中文;
  • 页:SXGC201901031
  • 页数:5
  • CN:01
  • ISSN:11-3449/TG
  • 分类号:200-204
摘要
采用机械合金化+热压制备了成分为Nb-22.5at.%Cr的细晶NbCr_2/Nb合金。通过Gleeble 3500型热模拟机上的恒应力压缩试验,研究了合金的高温蠕变行为,并采用透射电子显微镜观察了合金变形前后的组织。结果表明:NbCr_2/Nb合金的稳态蠕变速率随应力的增加和变形温度的升高而加快,1000℃和200 MPa条件下,NbCr_2/Nb合金的稳态蠕变速率为9.0×10-5s-1,1000℃下的应力指数为4.36,而200 MPa下的蠕变激活能为510.7 kJ·mol-1。蠕变变形过程中,Nb基体中位错的滑移、攀移和Laves相NbCr_2中的同步剪切是蠕变变形的主要方式;随着变形温度升高,Nb基体颗粒有形成亚晶的趋势,且两相颗粒界面处应力增大,Laves相NbCr_2颗粒中层错/孪晶密度增加。
        The fine-crystal NbCr_2/Nb alloy with composition Nb-22.5 at.% Cr was prepared by mechanical alloying and hot pressing.Then,the high temperature creep behaviors of NbCr_2/Nb alloy were studied by constant stress compression tests on Gleeble 3500 thermal simulator,and the microstructure of NbCr_2/Nb alloy before and after deformation was observed by transmission electron microscopy.The results show that the steady creep rate of NbCr_2/Nb alloy increases with the increase of stress and deformation temperature.The steady creep rate of NbCr_2/Nb alloy crept at 1000 ℃,200 MPa is 9.0×10-5 s-1.The stress exponent is 4.36 at 1000 ℃ and the creep activation energy is 510.7 kJ·mol-1 under 200 MPa.The dislocation slip and climb in the Nb matrix and the synchroshear in the Laves phase NbCr_2 are the main modes of creep deformation.With the increase of deformation temperature,Nb matrix particle tends to form subgrain,the stress at the interface of two phase particles increases and the density of stacking fault/twinning in the Laves phase NbCr_2 particle increases.
引文
[1]ZHANG S M,SHI X R,SHAN J B.Oxidation behaviours of Nb-22Ti-15Si-2Al-2Hf-2V-(2,14)Cr alloys with Al and Ymodified silicide coatings prepared by pack cementation[J].Progress in Natural Science:Materials International,2015,25:486-495.
    [2]余宸旭,肖来荣,赵小军,等.C元素的添加对Nb-20Ti-16Al合金组织和性能的影响[J].稀有金属,2017,41(9):980-984.YU Chenxu,XIAO Lairong,ZHAO Xiaojun,et al.Microstructure and mechanical properties of Nb-20Ti-16Al alloy with carbon addition[J].Chinese Journal of Rare Metals,2017,41(9):980-984.
    [3]CHEN C,ZHOU C G,GONG S K,et al.Deposition of Cr-modified silicide coatings on Nb-Si system intermetallics[J].Intermetallics,2007,15:805-809.
    [4]QIAO Y Q,LI M Y,GU X P.Development of silicide coatings over Nb-NbCr2alloy and their oxidation behavior at 1250℃[J].Surface&Coatings Technology,2014,258:921-930.
    [5]GUO B H,GUO X P.Effect of withdrawal rates on microstructures and room temperature fracture toughness in a directionally solidified Nb-Ti-Cr-Si based alloy[J].Materials Science and Engineering A,2014,617:39-45.
    [6]SU L F,JIA L N,FENG Y B,et al.Microstructure and roomtemperature fracture toughness of directionally solidified Nb-Si-TiCr-Al-Hf alloy[J].Materials Science&Engineering A,2013,560:672-677.
    [7]LIMA J C D,ALMEIDA T O,JERONIMO A R,et al.Reverse Monte Carlo simulations of an amorphous Cr25Nb75alloy produced by mechanical alloying[J].Journal of Non-Crystalline Solids,2006,352:109-115.
    [8]肖璇.Laves相Cr2Nb合金的原位合成与室温增韧研究[D].南京:南京航空大学,2008.XIAO Xuan.Research on the in-situ synthesis and room-temperature toughening of Laves phase Cr2Nb based alloys[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2008.
    [9]肖璇,鲁世强,马燕青,等.机械合金化-热压制备Nb/NbCr2复合材料的组织与性能[J].中国有色金属学报,2007,17(11):1761-1766.XIAO Xuan,LU Shiqiang,MA Yanqing,et al.Microstructure and properties of Nb/NbCr2composites prepared by mechanical alloying followed by hot pressing[J].The Chinese Journal of Nonferrous Metals,2007,17(11):1761-1766.
    [10]齐先胜,薛祥义,陈伟,等.表面塑性变形对高Nb-TiAl合金扩散连接界面组织演化的影响[J].塑性工程学报,2014,21(4):23-27.QI Xiansheng,XUE Xiangyi,CHEN Wei,et al.Influence of surface plastic deformation on the microstructure evolution of high Nb containing Ti Al alloy[J].Journal of Plasticity Engineering,2014,21(4):23-27.
    [11]CHAN K S.Modeling creep behavior of niobium silicide in-situ composites[J].Materials Science and Engineering A,2002,337:59-66.
    [12]XIA Z X,WANG C Y,LEI C,et al.Growth kinetics of Laves phase and its effect on creep rupture behavior in 9Cr heat resistant steel[J].Journal of Iron and Steel Research,International,2016,23(7):685-691.
    [13]ZHANG X Z,WU X J,LIU R,et al.Influence of Laves phase on creep strength of modified 9Cr-1Mo steel[J].Materials Science&Engineering A,2017,706:279-286.
    [14]KUHN B,TALIK M,NIEWOLAK L.Development of high chromium ferritic steels strengthened by intermetallic phases[J].Materials Science&Engineering A,2014,594:372-380.
    [15]TIAN S G,SU Y,QIAN B J,et al.Creep behavior of a single crystal nickel-based superalloy containing 4.2%Re[J].Materials and Design,2012,37(9):236-242.
    [16]LEE S,LIAW P K,LIU C T,et al.Cracking in Cr-Cr2Nb eutectic alloys due to thermal stresses[J].Materials Science and Engineering A,1999,268:184-192.
    [17]KUMAR K S,LIU C T.Precipitation in a Cr-Cr2Nb alloy[J].Acta Materialia,1997,45(9):3671-3686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700