用户名: 密码: 验证码:
预应变对DP600钢氢脆敏感性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel
  • 作者:柯书忠 ; 刘静 ; 黄峰 ; 王贞 ; 毕云杰
  • 英文作者:KE Shuzhong;LIU Jing;HUANG Feng;WANG Zhen;BI Yunjie;State key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology;
  • 关键词:DP600钢 ; 预应变 ; 慢应变速率拉伸实验 ; 渗氢技术 ; 氢脆敏感性 ; 氢扩散
  • 英文关键词:DP600 steel;;pre-strain;;SSRT;;electrochemical permeation technique;;HE susceptibility;;diffusion of hydrogen
  • 中文刊名:ZGFF
  • 英文刊名:Journal of Chinese Society for Corrosion and Protection
  • 机构:武汉科技大学省部共建耐火材料与冶金国家重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:中国腐蚀与防护学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金(51571154)~~
  • 语种:中文;
  • 页:ZGFF201805003
  • 页数:7
  • CN:05
  • ISSN:21-1474/TG
  • 分类号:18-24
摘要
利用慢应变速率拉伸实验(SSRT)及双电解池渗氢实验,结合断口形貌观察和分析,探索了预应变对DP600钢氢脆敏感性的影响规律及机理。结果表明:在本实验预应变量范围内,预应变量小于15%时,随着预应变量的增大,DP600钢试样的氢脆敏感性不断增大,当预应变量达到15%以后,其氢脆敏感性基本趋于稳定。预应变增大了钢中的位错密度,使氢的有效扩散系数降低,有效捕获的氢量增加,从而使钢试样的氢脆敏感性增大;但当预应变量进一步增加至15%以上时,位错的相互缠结减缓氢的扩散和聚集速度,从而使试样的氢脆敏感性增加趋于平缓。
        The effect of pre-strain on the hydrogen embrittlement(HE) susceptibility of DP600 steel was studied by means of slow strain-rate tensile(SSRT) test, electrochemical permeation technique and fractograph observation of fracture surface. The results indicate that the HE susceptibility of DP600 steel increases with the increasing pre-strain when the level of pre-strain is below 15%, and then tends to stable when the pre-strain exceeds 15%. The pre-strain increases dislocation density and the amount of effective hydrogen in the steel, but decreases the effective diffusivity(Deff) of hydrogen, so that the HE susceptibility increases. However, when the pre-strain increases to above 15%, the HE susceptibility gradually becomes stable due to the decrease of diffusion and aggregation of hydrogen, which resulted from the dislocation tangle.
引文
[1]Calcagnotto M,Ponge D,Raabe D.On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels[J].Metall.Mater.Trans.,2012,43A:37
    [2]Senuma T.Physical metallurgy of modern high strength steel sheets[J].ISIJ Int.,2001,41:520
    [3]Loidl M,Kolk O,Veith S,et al.Characterization of hydrogen embrittlement in automotive advanced high strength steels[J].Materialwiss.Werkstofftech.,2011,42:1105
    [4]Hui W J,Li Y,Zhang Y J,et al.Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIPsteel[J].Trans.Mater.Heat Treat.,2012,33(6):42(惠卫军,李阳,张永健等.预应变对中碳TRIP钢氢吸附及延迟断裂行为的影响[J].材料热处理学报,2012,33(6):42)
    [5]Chen J,Li C J,Zhang S H.Hydrogen embrittlement of cold drawn ferrite+matensite dual-phase steel[J].J.Beijing Univ.Sci.Technol.Beijing,1990,12:339(陈俊,李承基,章守华.冷拔变形(F+M)型双相钢的氢脆[J].北京科技大学学报,1990,12:339)
    [6]Takasugi T,Hanada S.The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys[J].Intermetallics,1997,5:127
    [7]Li X F,Zhang J,Wang Y F,et al.Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels[J].Mater.Sci.Eng.,2015,A641:45
    [8]Laureys A,Van den Eeckhout E,Petrov R,et al.Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging[J].Acta Mater.,2017,127:192
    [9]Liu Q,Atrens A.Reversible hydrogen trapping in a 3.5NiCrMoVmedium strength steel[J].Corros.Sci.,2015,96:112
    [10]Deng L.The evolution of multi-phase structure of 500 MPa high strength Seismic reinforcement in tensile deformation[D].Kunming:Kunming University of Science and Technology,2013(邓蕾.500 MPa高强度抗震钢筋多相组织在拉伸变形过程中的演变规律[D].昆明:昆明理工大学,2013)
    [11]Li X F,Wang Y F,Zhang P,et al.Effect of pre-strain on hydrogen embrittlement of high strength steels[J].Mater.Sci.Eng.,2014,A616:116
    [12]McMahon C J Jr.Hydrogen-induced intergranular fracture of steels[J].Eng.Fract.Mech.,2001,68:773
    [13]Yin H,Li Q,Li J X,et al.Study on hydrogen embrittlement for pre-charged Maraging Steel[J].Surf.Technol.,2016,45(7):22(尹航,李倩,李金许等.预充氢马氏体时效钢的氢脆性能研究[J].表面技术,2016,45(7):22)
    [14]Olden V,Thaulow C,Johnsen R.Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J].Mater.Des.,2008,29:1934
    [15]Guo W,Zhao W M,Zhang T M,et al.Hydrogen permeation behavior of X80 steel under cathodic polarization and stress[J].J.Chin.Soc.Corros.Prot.,2015,35:353(郭望,赵卫民,张体明等.阴极极化和应力耦合作用下X80钢氢渗透行为研究[J].中国腐蚀与防护学报,2015,35:353)
    [16]Kim S J,Jung H G,Kim K Y.Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment[J].Electrochim.Acta,2012,78:139
    [17]Young G A Jr,Scully J R.The diffusion and trapping of hydrogen in high purity aluminum[J].Acta Mater.,1998,46:6337
    [18]Escobar D P,Depover T,Duprez L,et al.Combined thermal desorption spectroscopy,differential scanning calorimetry,scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J].Acta Mater.,2012,60:2593
    [19]Choo W Y,Lee J Y.Effect of cold working on the hydrogen trapping phenomena in pure iron[J].Metall.Trans.,1983,14A:1299
    [20]Gerberich W W,Chen Y T.Hydrogen-controlled cracking-An approach to threshold stress intensity[J].Metall.Trans.,1975,6A:271
    [21]Ronevich J A,De Cooman B C,Speer J G,et al.Hydrogen effects in prestrained transformation induced plasticity steel[J].Metall.Mater.Trans.,2012,43A:2293
    [22]Wang Y B,Wang S,Yan L W,et al.The effects of plastic deformation on hydrogen induced cracking[J].J.Chin.Soc.Corros.Prot.,2000,20:248(王燕斌,王胜,颜练武等.塑性变形在氢致断裂中的作用[J].中国腐蚀与防护学报,2000,20:248)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700