用户名: 密码: 验证码:
高迁移率族蛋白1在新生儿败血症中的表达与机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expression of high-mobility group box 1 in neonates with sepsis
  • 作者:卓素艳 ; 廖莉
  • 英文作者:ZHUO Su-Yan;LIAO Li;epartment of Pediatrics, People's Hospital of Chongqing Shapingba District;
  • 关键词:新生儿败血症 ; 高迁移率族蛋白1 ; Toll样受体4 ; 核转录因子κB ; 白细胞介素-8 ; 甘草甜素 ; 新生儿
  • 英文关键词:Neonatal sepsis;;High-mobility group box 1;;Toll-like receptor 4;;Nuclear factor-kappa B;;Interleukin-8;;Glycyrrhizin;;Neonate
  • 中文刊名:DDKZ
  • 英文刊名:Chinese Journal of Contemporary Pediatrics
  • 机构:重庆市沙坪坝区人民医院儿科;
  • 出版日期:2019-02-20 15:57
  • 出版单位:中国当代儿科杂志
  • 年:2019
  • 期:v.21
  • 语种:中文;
  • 页:DDKZ201902005
  • 页数:8
  • CN:02
  • ISSN:43-1301/R
  • 分类号:33-40
摘要
目的探讨高迁移率族蛋白1(HMGB1)在新生儿败血症中的表达与机制。方法选取62例新生儿败血症患儿为败血症组,66例局部感染新生儿为局部感染组,70例健康新生儿为健康对照组。检测三组新生儿血清中IL-6、IL-8、IL-17、IL-23、C反应蛋白(CRP)和降钙素原(PCT)的含量,外周血单个核细胞中HMGB1、Toll样受体4(TLR4)、核转录因子κB(NF-κB)mRNA及TLR4、NF-κB蛋白的表达。将健康新生儿的外周血单个核细胞分为对照组、HMGB1处理组、HMGB1+TAK-242(TLR4抑制剂)组、HMGB1+PDTC(NF-κB抑制剂)组,检测各组TLR4、NF-κB、IL-8 mRNA及TLR4、NF-κB蛋白的表达。将健康新生儿的外周血单个核细胞分为对照组、LPS处理组、LPS+甘草甜素(HMGB1抑制剂)组,检测HMGB1、TLR4、NF-κB、IL-8 mRNA及TLR4、NF-κB蛋白的表达。结果败血症组患儿血清中IL-6、IL-8、IL-17、IL-23、CRP、PCT含量均显著高于局部感染组和健康对照组(P<0.05)。败血症组患儿外周血单个核细胞中HMGB1、TLR4、NF-κB mRNA及TLR4、NF-κB蛋白的相对表达量均显著高于局部感染组和健康对照组(P<0.05)。HMGB1可以显著诱导外周血单个核细胞高表达TLR4、NF-κB mRNA及其蛋白(P<0.05);使用TAK-242可抑制TLR4、NF-κB m RNA及其蛋白的高表达,并进而抑制IL-8 mRNA的表达(P<0.05);使用PDTC可抑制NF-κB mRNA及其蛋白的高表达,并进而抑制IL-8 mRNA的表达(P<0.05)。LPS可显著诱导HMGB1 mRNA,以及TLR4、NF-κB mRNA及其蛋白的高表达,进而刺激IL-8 mRNA的表达(P<0.05);使用甘草甜素可抑制HMGB1 mRNA的高表达,抑制TLR4、NF-κB mRNA及其蛋白的高表达,进而降低IL-8 mRNA的高表达(P<0.05)。结论 HMGB1可能通过激活TLR4/NF-κB信号通路诱导IL-8等炎症因子的高分泌在新生儿败血症的发病中起重要作用,HMGB1阻断剂甘草甜素可抑制TLR4/NF-κB信号通路的活化及炎症因子的分泌。
        Objective To study the expression of high-mobility group box 1(HMGB1) in neonates with sepsis and its role in the pathogenesis of neonatal sepsis. Methods A total of 62 neonates with sepsis were enrolled as the sepsis group, 66 neonates with local infection were enrolled as the local infection group, and 70 healthy neonates were enrolled as the healthy control group. Serum levels of interleukin-6(IL-6), interleukin-8(IL-8), interleukin-17(IL-17), interleukin-23(IL-23), C-reactive protein(CRP) and procalcitonin(PCT) were measured. The mRNA expression of HMGB1, Toll-like receptor 4(TLR4) and nuclear factor-kappa B(NF-κB) and the protein expression of TLR4 and NF-κB in peripheral blood mononuclear cells(PBMCs) were also measured. PBMCs from healthy neonates were divided into 4 groups: control, HMGB1 treatment, HMGB1+TAK-242(a TLR4 inhibitor) treatment and HMGB1+PDTC(an NF-κB inhibitor) treatment, and the mRNA expression of TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured. PBMCs from healthy neonates were divided into another 3 groups: control, LPS treatment and LPS+glycyrrhizin(an HMGB1 inhibitor) treatment, and the mRNA expression of HMGB1, TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured. Results Compared with the local infection and healthy control groups, the sepsis group had significantly higher serum levels of IL-6, IL-8, IL-17, IL-23, CRP and PCT(P<0.05), as well as significantly higher m RNA expression of HMGB1, TLR4 and NF-κB and protein expression of TLR4 and NF-κB in PBMCs(P<0.05). HMGB1 significantly induced the m RNA and protein expression of TLR4 and NF-κB in PBMCs(P<0.05). TAK-242 inhibited the m RNA and protein expression of TLR4 and NF-κB and m RNA expression of IL-8(P<0.05). PDTC inhibited the m RNA and protein expression of NF-κB and the m RNA expression of IL-8(P<0.05). LPS significantly induced the m RNA expression of HMGB1 and the m RNA and protein expression of TLR4 and NF-κB and then stimulated the m RNA expression of IL-8(P<0.05). Glycyrrhizin inhibited the m RNA expression of HMGB1 and the m RNA and protein expression of TLR4 and NF-κB and then reduced the m RNA expression of IL-8(P<0.05). Conclusions HMGB1 plays an important role in the pathogenesis of neonatal sepsis by activating the TLR4/NF-κB signaling pathway and inducing the secretion of inflammatory factors including IL-8. The HMGB1 blocker glycyrrhizin can inhibit activation of the TLR4/NF-κB signaling pathway and the secretion of inflammatory factors.
引文
[1]Oza S,Lawn JE,Hogan DR,et al.Neonatal cause-of-death estimates for the early and late neonatal periods for 194countries:2000-2013[J].Bull World Health Organ,2015,93(1):19-28.
    [2]Richard SA,Jiang Y,Xiang LH,et al.Post-translational modifications of high mobility group box 1 and cancer[J].Am JTransl Res,2017,9(12):5181-5196.
    [3]He SJ,Cheng J,Feng X,et al.The dual role and therapeutic potential of high-mobility group box 1 in cancer[J].Oncotarget,2017,8(38):64534-64550.
    [4]Dipasquale V,Cutrupi MC,Colavita L,et al.Neuroinflammation in autism spectrum disorders:role of high mobility group box 1protein[J].Int J Mol Cell Med,2017,6(3):148-155.
    [5]Bianchi ME,Crippa MP,Manfredi AA,et al.High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation,innate and adaptive immunity,and tissue repair[J].Immunol Rev,2017,280(1):74-82.
    [6]Yu H,Qi Z,Zhao L,et al.Prognostic value of dynamic monitoring of cellular immunity and HMGB1 in severe sepsis:delayed chronic inflammation may be the leading cause of death in late severe sepsis[J].Clin Lab,2016,62(12):2379-2385.
    [7]Lee W,Ku SK,Bae JS.Zingerone reduces HMGB1-mediated septic responses and improves survival in septic mice[J].Toxicol Appl Pharmacol,2017,329:202-211.
    [8]Yang M,Cao L,Xie M,et al.Chloroquine inhibits HMGB1inflammatory signaling and protects mice from lethal sepsis[J].Biochem Pharmacol,2013,86(3):410-418.
    [9]Wang H,Liao H,Ochani M,et al.Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis[J].Nat Med,2004,10(11):1216-1221.
    [10]何静雅,章乐,王晓蕾,等.HMGB1在胎膜早破新生儿及孕妇外周血中表达及临床意义[J].江苏医药,2015,41(13):1575-1576.
    [11]中华医学会儿科学分会新生儿学组,《中华医学会中华儿科杂志》编辑委员会.新生儿败血症诊疗方案[J].中华儿科杂志,2003,41(12):897-899.
    [12]Huang Y,Zhou M,Li C,et al.Picroside II protects against sepsis via suppressing inflammation in mice[J].Am J Transl Res,2016,8(12):5519-5531.
    [13]Xu M,Zhou GM,Wang LH,et al.Inhibiting high-mobility group box 1(HMGB1)attenuates inflammatory cytokine expression and neurological deficit in ischemic brain injury following cardiac arrest in rats[J].Inflammation,2016,39(4):1594-1602.
    [14]Wang X,Guo Y,Wang C,et al.Micro RNA-142-3p inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting HMGB1[J].Inflammation,2016,39(5):1718-1728.
    [15]Scaffidi P,Misteli T,Bianchi ME.Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J].Nature,2002,418(6894):191-195.
    [16]Zhang H,Yang N,Wang T,et al.Vitamin Dreduces in flammatory response in asthmatic mice through HMGB1/TLR4/NFkappa B signaling pathway[J].Mol Med Rep,2018,17(2):2915-2920.
    [17]Dong LY,Chen F,Xu M,et al.Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-kappa B signaling pathway[J].Am J Transl Res,2018,10(5):1273-1283.
    [18]Li MJ,Li F,Xu J,et al.rh HMGB1 drives osteoblast migration in a TLR2/TLR4-and NF-kappa B-dependent manner[J].Biosci Rep,2016,36(1):e00300.
    [19]Li G,Wu X,Yang L,et al.TLR4-mediated NF-kappa B signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis[J].Int J Mol Med,2016,37(1):99-107.
    [20]Xiong X,Gu L,Wang Y,et al.Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms[J].J Neuroinflammation,2016,13(1):241.
    [21]Ekanayaka SA,Mc Clellan SA,Barrett RP,et al.Glycyrrhizin reduces HMGB1 and bacterial load in pseudomonas aeruginosa keratitis[J].Invest Ophthalmol Vis Sci,2016,57(13):5799-5809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700