用户名: 密码: 验证码:
岩溶管道网络数值模拟方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in research on conduit networks in karst aquifer
  • 作者:王益伟 ; 渠光华 ; 刘埔 ; 褚学伟 ; 段先前
  • 英文作者:WANG Yi-wei;QU Guang-hua;LIU Pu;CHU Xue-wei;DUAN Xian-qian;College of Resource and Environmental Engineering, Guizhou University;Ming College of Guizhou University;
  • 关键词:岩溶含水层 ; 非均质介质 ; 岩溶管道网络 ; 数值模拟
  • 英文关键词:karst aquifer;;heterogeneous medium;;karst conduit network;;numerical simulation
  • 中文刊名:HBSD
  • 英文刊名:Water Sciences and Engineering Technology
  • 机构:贵州大学资源与环境工程学院;贵州大学矿业工程学院;
  • 出版日期:2019-02-25
  • 出版单位:水科学与工程技术
  • 年:2019
  • 期:No.213
  • 基金:国家自然科学基金(41702270)
  • 语种:中文;
  • 页:HBSD201901011
  • 页数:5
  • CN:01
  • ISSN:13-1348/TV
  • 分类号:36-40
摘要
采用数值模拟的方式获得管道网络空间信息是开展岩溶含水层非均质性研究的有效手段。介绍了近几年国内外有关岩溶管道网络数值模拟方法的研究进展,系统地总结了管道网络系统演化过程及溶管道网络结构模拟方法的应用及取得的相应成果。管道网络系统演化过程模拟,有利于清晰的理解岩溶演化过程,并能够提供较为精确的关于空隙、管道的演化信息。但该种方法很难反映出真实管道网络系统的空间特征。溶管道网络结构模拟方法,致力于对管道网络的空间特征刻画,目前主要存在的模型有全局式模型、分布模型及非均质模型。这些成果丰富和发展了岩溶管道网络数值模拟方法,对于岩溶含水层水资源开发利用和保护具有重要理论意义和实用价值。
        The numerical simulation to obtain the spatial information of conduit networks is an effective means to study the heterogeneity characteristic of karst aquifer. On the basis of comprehensive analyses of the relevant literatures of this fields,this paper introduces the advances in research on conduit networks simulation in karst aquifer at home and abroad in recent decades, summarizes systematically the application and achievements of the simulation of evolution process and structure of conduit networks in karst aquifer. The simulation of the evolution process of conduit networks is helpful for a clear understanding of the karst evolution process and also can provide more accurate information about the evolution of voids and conduit networks. However, this method is difficult to reflect the spatial characteristics of the real conduit networks.The simulation structure of conduit network is devoted to portraying the spatial characteristics of conduit networks. The main models include global model, distribution model and heterogeneous model. They are of important theoretical significance and practical value for the development and protection of groundwater resources in karst aquifer.
引文
[1]Lauber U, Ufrecht W, Goldscheider N. Spatially resolved information on karst conduit flow from in-cave dye tracing[J]. Hydrol. Earth Syst. Sci., 2014, 18:435-445.
    [2]Chang Y, Wu J. Effects of the conduit network on the spring hydrograph of the karst Aquifer[J]. J Hydrol, 2015, 527:517-530.
    [3]Kovács A. Estimation of conduit network geometry of a karst aquifer by the means of groundwater flow modelling(Bure,Switzerland)[J]. Bol Geol Min 2003, 114:183-92.
    [4]Renard P, Allard D. Connectivity metrics for subsurface flow and transport[J]. Adv Water Resour, 2013, 51:168-196.
    [5]Dreybrodt W, Gabrovsek F, Douchko R. Processes of speleogenesis:a modelling approach[M]. Ljubljana:Zalo ba ZRC, 2005.
    [6]Kaufmann G. Modelling karst geomorphology on different time scales[J]. Geomorphology, 2009, 106:62-77.
    [7]Eulogio PI, Juan JDV, Victor RG. Morphometric analysis of three-dimensional networks of karst conduits[J].Geomorphology, 2011, 132(1-2):17-28.
    [8]Malard A, Jeannin PY, Vouillamoz J, et al. An integrated approach for catchment delineation and conduit-network modeling in karst aquifers:application to a site in the Swiss tabular Jura[J]. Hydrogeology Journal, 2015,23(7):1341-1357.
    [9]Palmer AN. Digital modeling of karst aquifers:successes,failures, and promises[J]. Geological Society of America Special Papers, 2006, 404:243-250.
    [10]Eulogio PI, Dowd PA, Xu C, et al. Stochastic simulations of karst conduit network[J]. Adv Water Resour,2012, 35:141-150.
    [11]Aquilina L, Ladouche B, D rfliger N. Water storage and transfer in the epikarst of karstic systems during high flow periods[J]. J Hydrol, 2006, 327(3-4):472-485.
    [12]Lakey B, Krothe NC. Stable isotopic variation of storm discharge from a perennial karst spring, Indiana[J]. Water Resour Res, 1996,32(3):721-731.
    [13]Mayaud C, Wagner T, Benischke R, Birk S. Single event time series analysis in a binary karst catchment evaluated using a groundwater model(Lurbach system, Austria)[J].J Hydrol, 2014, 511:628-639.
    [14]Maramathas AJ, Boudouvis AG. Manifestation and measurement of the fractal characteristics of karst hydrogeological formations[J]. Adv Water Resour, 2006,29:112-116.
    [15]Jaquet O, Jeannin PY. Modelling the karstic medium:a geostatistical approach.In:Armstrong M, Dowd PA,editors. Geostatistical simulations[J]. Amsterdam:Kluwer Academic Publishers,1994:185-195.
    [16]Borghi A, Renard P, Jenni S. How to model realistic 3D karst reservoirs using a pseudo-genetic methodology.Example of two case studies[M]. In:Andreo F, Carrasco B, Durán JJ, LaMoreaux JW, editors. Advances in research in karst media.Berlin:Springer;2010.p.251-5.526.
    [17]Henrion V. Pseudo-genetic approach for stochastic simulation of 3D geometry of fractured and karstic networks[J].PhD Thesis, Institut National Polytechnique de Lorraine(Nancy-Université),France, 2011.
    [18]Meerschman E, Pirot G, Mariethoz G, et al. A practical guide to performing multiple-point statistical simulations with the Direct Sampling algorithm[J].Computers&Geosciences, 2013, 52:307-324.
    [19]Hajizadeh A, Safekordi A, Farhadpour FA. A multiplepoint statistics algorithm for 3D pore space reconstruction from 2D images[J]. Advances in Water Resources, 2011,34:1256-1267.
    [20]Comunian A, Renard P, Straubhaar J, et al. Threedimensional high resolution fluvio-glacial aquifer analog.Part 2. Geostatistical modeling[J]. Journal of Hydrology,2011,405(1-2):10-23.
    [21]刘跃杰,李继红.基于三维训练图像的多点地质统计学岩相建模[J].石油化工应用, 2015,34(9):94-100.
    [22]向传刚.运用多点地质统计学确定水下分流河道宽度及钻遇概率[J].断块油气田, 2015, 22(2):164-167.
    [23]张弛,吴剑锋,陈干,等.裂隙网络生成的随机模拟研究[J].水文地质及工程地质,2015,42(4):12-17.
    [24]Huang T, Li X. GPU-accelerated Direct Sampling method for multiple-point statistical simulation[J].Computers&Geosciences,2013, 57:13-23.
    [25]Rezaee H, Mariethoz G. Multiple-point geostatistical simulation using the bunch-pasting direct sampling method[J]. Computers&Geosciences,2013, 54:293-308.
    [26]Hunt A. Percolation theory for flow in porous media[M].Berlin, Heidelberg:Springer, 2005.
    [27]Diestel R. Graph theory[M]. Heidelberg:Springer, 2012.
    [28]Edery Y, Guadagnini A, Scher H, Berkowitz B. Origins of anomalous transport in heterogeneous media:Structural and dynamic controls[J].Water Resour Res,2014,50(2):1490-1505.
    [29]Tyukhova AR, Kinzelbach W, Willmann M. Delineation of connectivity structures in 2-D heterogeneous hydraulic conductivity fields[J]. Water Resour Res 2015, 51(7):5846-5854.
    [30]Knudby C, Carrera J. On the relationship between indicators of geostatistical, flow and transport connectivity[J]. Adv Water Resour, 2005, 28(4):405-421.
    [31]Vogel HJ, Roth K. Quantitative morphology and network representation of soil pore structure[J]. Adv Water Resour2001, 24(3-4):233-242.
    [32]Fiori A, Boso F, De Barros FPJ, et al. An indirect assessment on the impact of connectivity of conductivity classes upon longitudinal asymptotic macrodispersivity[J].Water Resour Res, 2010,46(8):1-7.
    [33]R onayne MJ. Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix[J]. Adv Water Resour, 2013, 56:27-34.
    [34]Tyukhova AR, Willmann M. Connectivity metrics based on the path of smallest resistance[J]. Adv Water Resour,2016, 88:14-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700