用户名: 密码: 验证码:
VOCs吸附剂及其吸附机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in VOCs Adsorbents and Adsorption Mechanisms
  • 作者:王满曼 ; 温变英 ; 樊保民
  • 英文作者:WANG Manman;WEN Bianying;FAN Baomin;School of Material Science and Mechanical Engineering, Beijing Technology and Business University;
  • 关键词:挥发性有机物 ; 多孔吸附剂 ; 吸附机理 ; 应用
  • 英文关键词:volatile organic compound;;porous adsorbent;;adsorption mechanism;;application
  • 中文刊名:ZGSU
  • 英文刊名:China Plastics
  • 机构:北京工商大学材料与机械工程学院;
  • 出版日期:2019-03-26
  • 出版单位:中国塑料
  • 年:2019
  • 期:v.33;No.300
  • 语种:中文;
  • 页:ZGSU201903024
  • 页数:7
  • CN:03
  • ISSN:11-1846/TQ
  • 分类号:117-123
摘要
挥发性有机物(VOCs)已经成为继颗粒物、二氧化硫之后的又一大气体污染物,开发有效治理VOCs的方法是目前普遍关注的研究热点。具有吸附能力的多孔物质在治理VOCs方面的功效被日益重视。本文从制备方法、化学组成、结构特征、吸附性能及对应机理等方面对多孔吸附剂进行重点介绍,概述了吸附剂在聚合物加工中净化VOCs的应用,并对吸附材料的发展前景进行了展望。
        Volatile organic compounds(VOCs) are another type of serious pollutant except for particulate matter and sulfur dioxide, and therefore the control of VOCs has become a public concern in recent years. The porous materials with an adsorption capacity play an important role in the treatment of VOCs. In this paper, the preparation methods, chemical composition, structural characteristics, adsorption properties and relevant mechanisms of a series of porous adsorbents were introduced, and the application of adsorbents for removal of VOCs in polymer processing was summarized. Moreover, the development prospects of adsorbents were discussed.
引文
[1] 刘霄龙, 王健, 王雪,等. V2O5/TiO2体系催化氧化氯苯的机理研究[C]//全国二氧化硫氮氧化物汞污染防治技术暨细颗粒物. 2014.
    [2] 巫先坤, 张锋, 王志祥,等. 新型吸收剂净化吸收甲苯废气的实验研究[J]. 环境工程学报, 2013, 7(5):1 878-1 882. WU X K, ZHANG F, WANG Z X, et al.Experimental Study of New Type Absorbent to Treat Waste Gas Containing Toluene[J]. Chinese Journal of Environmental Engineering, 2013, 7(5):1 878-1 882.
    [3] LONG C, YU W, LI A. Adsorption of n-Hexane Vapor by Macroporous and Hypercrosslinked Polymeric Resins: Equilibrium and Break Through Analysis[J]. Chemical Engineering Journal, 2013, 221(4):105-110.
    [4] ZHU T, LU L, ZHOU H, et al. Advances in Biopurification Technology of VOCs[J]. Biotechnology Frontier, 2013, 2(3):2 073-2 078.
    [5] PAN K L, PAN G T, CHONG S, et al. Removal of VOCs from Gas Streams with Double Perovskite-type Catalysts.[J]. Journal of Environmental Sciences, 2017.
    [6] LIN L, CHAI Y, ZHAO B, et al. Photocatalytic Oxidation for Degradation of VOCs[J]. Open Journal of Inorganic Chemistry, 2013, 3(1):14-25.
    [7] 崔静洁, 何文, 廖世军,等. 多孔材料的孔结构表征及其分析[J]. 材料导报, 2009, 23(13):82-86. CUI J J, HE W, LIAO S J, et al. Measuring and Analysing Techniques of Structural Features for Porous Materials Research[J]. Materials Review, 2009, 23(13):82-86.
    [8] EVERETT D H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemi-stry[J]. Pure & Applied Chemistry, 1972, 31(4):577-638.
    [9] 魏建文, 林志峰, 何泽瑜,等. 微孔-介孔材料吸附CO2的研究进展[J]. 化工新型材料, 2017(7):4-6. WEI J W, LIN Z F, HE Z Y, et al. Progress in Micro-mesoporous Materials for CO2 Adsorption[J]. New Chemical Materials, 2017(7):4-6.
    [10] 孙政. 活性炭对有机气体的选择性吸附研究[D]. 中南大学, 2011.
    [11] 汤进华, 梁晓怿, 龙东辉,等. 活性炭孔结构和表面官能团对吸附甲醛性能影响[J]. 炭素技术, 2007, 26(3):21-25. TANG J H, LIANG X Y, LONG D H, et al. Effects of Micropore and Functional Groups of Activated Carbon on Adsorption Behavior of Formaldehyde[J]. Carbon Techniques, 2007, 26(3):21-25.
    [12] 郑经堂. 活性炭纤维[J]. 新型炭材料, 2000, 15(2):80-80. ZHENG J T. Activated Carbon Fibers[J]. New Carbon Materials, 2000, 15(2):80-80.
    [13] 王俏运, 郑育英, 黄慧民,等. ACF的制备及其在VOCs回收中的应用进展[J]. 化工新型材料, 2009, 37(11):34-36. WANG Q Y, ZHENG Y Y, HUANG H M, et al. The Preparation of ACF and Its Research Progress of Application in Recovering VOCs[J]. New Chemical Materials, 2009, 37(11):34-36.
    [14] XIE Z Z, WANG L, CHENG G, et al. Adsorption Properties of Regenerative Materials for Removal of Low Concentration of Toluene[J]. Air Repair, 2016, 66(12):1 224-1 236.
    [15] DAS D, GAUR V, VERMA N. Removal of Volatile Organic Compound by Activated Carbon Fiber[J]. Carbon, 2004, 42(14):2 949-2 962.
    [16] MARSHALL C E. Layer Lattices and the Base-Exchange Clays[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91(1):433-449.
    [17] LI Y, YU J. New Stories of Zeolite Structures: Their Descriptions, Determinations,Predictions, and Evaluations[J]. Chemical Reviews, 2014, 114(14):7 268-7 316.
    [18] GUIMAR?ES L, ENYASHIN A N, SEIFERT G, et al. Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models[J].Journal of Physical Chemistry C,2010,114(26):11 358-11 363.
    [19] 林小琴, 王钺博, 朱建喜,等. 酸化蒙脱石对挥发性有机物的吸附研究[J]. 矿物学报, 2015, 35(3):281-287. LIN X Q, WANG Y B, ZHU J X, et al. Preparation and Characterization of Acid Activated Montmorillonites for VOCs Removal[J]. Acta Mineralogica Sinica, 2015, 35(3):281-287.
    [20] 蔡晔, 陈银飞. 几种重要非金属矿的应用与发展[J]. 浙江化工, 1997(2):3-7.
    [21] 郭科. 多级孔复合沸石的结构和酸性能研究[D].太原理工大学,2013.
    [22] 冯守爱, 孟冬玲, 黄泰松,等. 13X分子筛对烟气中低分子醛酮的选择性吸附研究[J]. 化学世界, 2012, 53(10):580-583. FENG S A, MENG D L, HUANG T S, et al. Study on the Selective Adsorption of Low-molecular Aldehydes and Ketones from Cigarette Smoke Using 13X Molecular Sieve[J]. Chemical World, 2012, 53(10):580-583.
    [23] THENG B K G, RUSSELL M, CHURCHMAN G J, et al. Surface Properties of Allophane, Halloysite and Imogolite[C]//Clays & Clay Minerals. 1982:143-149.
    [24] JOUSSEIN E, PETIT S, DELVAUX B. Behavior of Halloysite Clay under Formamide Treatment[J]. Applied Clay Science, 2007, 35(1):17-24.
    [25] ZHOU S H, CHUAN X Y. Synthesis of Mesoporous Carbon Using Halloyiste as Template[J]. Journal of Inorganic Materials, 2014, 29(6):584-588.
    [26] SILVA M D, DOS SANTOS E, LOURENCO M, et al. Structural, Electronic and Mechanical Properties of Inner Surface Modified Imogolite Nanotubes[J]. Frontiers in Materials, 2015, 2:16.
    [27] 范利丹, 张冰冰, 贺超峰,等. 埃洛石的结构特性、表面改性及应用研究进展[J]. 材料导报, 2016, 30(3):96-100. FAN L D, ZHANG B B, HE C F, et al. Research Progress on Structural Properties, Surface Modification and Application of Halloysite Nanotubes[J]. Materials Review, 2016, 30(3):96-100.
    [28] DENG L, YUAN P, LIU D, et al. Effects of Microstructure of Clay Minerals, Montmorillonite, Kaolinite and Halloysite, on Their Benzene Adsorption Behaviors[J]. Applied Clay Science, 2017, 143: 184-191.
    [29] 孙俊民, 王秉军, 张占军. 高铝粉煤灰资源化利用与循环经济[J]. 轻金属, 2012(10):1-5. SUN J M, WANG B J, ZHANG Z J. Resource Utilization of High Aluminum Fly Ash and Circular Economy[J]. Light Metals, 2012(10):1-5.
    [30] 吴盼. 粉煤灰基新型硅酸钙填料的湿部化学行为特性研究[D]. 陕西科技大学, 2014.
    [31] 杨刚刚. 介孔硅酸钙的合成、改性及其对重金属离子的吸附性能[D]. 湖南科技大学, 2016.
    [32] 唐运容, 郭蕾, 胡睿青,等. 多孔硅酸钙复合聚丙烯无纺布的制备及其有害气体吸附性能[J]. 国外塑料, 2015, 33(3). TANG Y R, GUO L, HU R Q, et al. Properties andStructural Analysis of Polypropylene Non-woven Fabric Coating Fly Ash-based Porous Calcium Silicate[J]. World Plastics, 2015, 33(3).
    [33] ZHANG G, LIU Y, ZHENG S, et al. Adsorption of Volatile Organic Compounds onto Natural Porous Minerals[J]. Journal of Hazardous Materials, 2018, 364:317-324.
    [34] PRAKASH D S, ATHOTA K V, GREENE H L, et al. Sorption and Catalytic Destruction of Chlorinated VOCs Using Fresh and Dealuminated Y and ZSM-5 Zeolites[J]. 1995.
    [35] MOROZOV G, BREUS V, NEKLUDOV S, et al. Sorption of Volatile Organic Compounds and Their Mixtures on Montmorillonite at Different Humidity[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 454(454):159-171.
    [36] GERMAIN J, FRéCHET J M J, SVEC F. Hypercrosslinked Polyanilines with Nanoporous Structure and High Surface Area: Potential Adsorbents for Hydrogen Storage[J]. Journal of Materials Chemistry, 2007, 17(47):4 989-4 997.
    [37] DAWSON R, COOPER A I, ADAMS D J. Nanoporous Organic Polymer Networks[J]. Progress in Polymer Science, 2011, 37(4):530-563.
    [38] XU S, LUO Y, TAN B. Recent Development of Hypercrosslinked Microporous Organic Polymers.[J]. Macromolecular Rapid Communications, 2013, 34(6):471.
    [39] WANG S, ZHANG L, LONG C, et al. Enhanced Adsorption and Desorption of VOCs Vapor on Novel Micro-mesoporous Polymeric Adsorbents[J]. Journal of Colloid & Interface Science, 2014, 428(428):185-190.
    [40] WU J, ZHANG L, LONG C, et al. Adsorption Characteristics of Pentane, Hexane, and Heptane: Comparison of Hydrophobic Hypercrosslinked Polymeric Adsorbent with Activated Carbon[J]. Journal of Chemical & Engineering Data, 2017, 57(57):3 426-3 433.
    [41] VELLINGIRI K, SZULEJKO J E, KUMAR P, et al. Metal Organic Frameworks as Sorption Media for Volatile and Semi-volatile Organic Compounds at Ambient Conditions[J]. Scientific Reports, 2016, 6:27 813.
    [42] BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic Frameworks with High Capacity and Selectivity for Harmful Gases.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33):11 623-11 627.
    [43] HAQUE E, LO V, MINETT A I, et al. Dichotomous Adsorption Behaviour of Dyes on an Amino-functionalised Metal-organic Framework, Amino-MIL-101(Al)[J]. Journal of Materials Chemistry A, 2013, 2(1):193-203.
    [44] SINGHON R, HUSSON J, KNORR M, et al. Adsorption of Ni(II) Ions on Colloidal Hybrid Organic-inorganic Silica Composites[J]. Colloids & Surfaces B Biointerfaces, 2012, 93(1):1-7.
    [45] 郭军, 雷坚志. 有机—无机杂化材料研究新进展[J]. 湖南科技学院学报, 2005, 26(11):89-93. GUO J, LEI J Z. NewAdvances in the Study on the Orga-nic/Inorganic Hybrid Materials[J]. Journal of Hunan University of Science and Engineering, 2005, 26(11):89-93.
    [46] YAGHI O M, LI G, LI H. Selective Binding and Removal of Guests in a Microporous Metal-organic Framework[J]. Nature, 1995, 378(6558):703-706.
    [47] LLEWELLYN P L, BOURRELLY S, SERRE C, et al. High Uptakes of CO2 and CH4 in Mesoporous Metal-organic Frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14):7 245-7 250.
    [48] BUX H, LIANG F, Li Y, et al. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-assisted Solvothermal Synthesis[J]. Journal of the American Chemical Society, 2009, 131(44):16 000-16 001.
    [49] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability.[J]. Journal of the American Chemical Society, 2008, 130(42):13 850-1.
    [50] YING W, CHEN H, LIU D, et al. Adsorption and Separation of Ethane/Ethylene on ZIFs with Various Topologies: Combining GCMC Simulation with the Ideal Adsorbed Solution Theory (IAST)[J]. Chemical Engineering Science, 2015, 124:144-153.
    [51] XIAN S, YU Y, XIAO J, et al. Competitive Adsorption of Water Vapor with VOCs Dichloroethane, Ethyl Acetate and Benzene on MIL-101(Cr) in Humid Atmosphere[J]. Rsc Advances, 2014, 5(3):1 827-1 834.
    [52] ZHAO Z, SHA W, YAN Y, et al. Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1)[J]. Chemical Engineering Journal, 2015, 259(259):79-89.
    [53] 莫奔露.红辉沸石对甲醛的吸附及其在涂料中的应用[J].广东经济,2017, (16):295-296.
    [54] 郑水林, 王秀宝, 孙志明. 纳米TiO2/硅藻土复合光催化材料性能特点及应用[J]. 中国涂料, 2015(7). ZHENG S L, WANG X B, SUN Z M. Performance Characteristics and Application of Nano-TiO2/Diatomite Composite Photo-catalytic Material[J]. China Coatings, 2015(7).
    [55] 陈凌, 宋宝祥, 陈志军. 合成多孔硅酸钙高吸附性环保母料的制备及性能研究[C]//中国塑料加工工业协会改性塑料专业委员会理事会第一次会议暨2014年年会. 2014.
    [56] 林溪顺, 李凯夫, 董倩倩,等. 硅藻土增强PVC基木塑复合材料性能研究[J]. 塑料科技, 2017, 45(8):59-62. LIN X S, LI K F, DONG Q Q, et al.Study on Performances of Diatomite Enhanced PVC Based Wood-plastic Composites[J]. Plastics Science and Technology, 2017, 45(8):59-62.
    [57] 熊一鸣, 秦舒浩, 王莉,等. 沸石粉对PP中VOC散发性能的影响[J]. 工程塑料应用, 2017, 45(8):118-122. XIONG Y M, QIN S H, WANG L, et al.In?uence of Zeolite Powder on the Emission Properties of PP VOC[J]. Engineering Plastics Application, 2017, 45(8):118-122.
    [58] 王涵, 吉芳英, 范剑平,等. 聚乙烯醇包埋水化硅酸钙粉末制备薄片状材料用于处理含磷废水[J]. 环境工程学报, 2017, 11(8):4 489-4 496. WANG H, JI F Y, FAN J P, et al. Preparation of PVAEntrapped CSH Adsorbent Sheets and Used for Treatment of Phosphorus Wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(8):4 489-4 496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700