用户名: 密码: 验证码:
Mesoporous NiCo_2O_4 nanoneedles@MnO_2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mesoporous NiCo_2O_4 nanoneedles@MnO_2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors
  • 作者:Yanmei ; Li ; Jingjing ; Pan ; Jinzhu ; Wu ; Tingfeng ; Yi ; Ying ; Xie
  • 英文作者:Yanmei Li;Jingjing Pan;Jinzhu Wu;Tingfeng Yi;Ying Xie;School of Chemistry and Chemical Engineering, Anhui University of Technology;School of Resources and Materials, Northeastern University at Qinhuangdao;Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University;
  • 英文关键词:Supercapacitor;;First-principles calculations;;Electrochemical performance;;Synergistic effect;;NiCo_2O_4
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:School of Chemistry and Chemical Engineering, Anhui University of Technology;School of Resources and Materials, Northeastern University at Qinhuangdao;Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University;
  • 出版日期:2019-04-04
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.31
  • 基金:financially supported by the National Natural Science Foundation of China (nos. 51774002 and 21773060);; Anhui Provincial Science Fund for Excellent Young Scholars (no. gxyqZD2016066)
  • 语种:英文;
  • 页:TRQZ201904021
  • 页数:11
  • CN:04
  • ISSN:10-1287/O6
  • 分类号:175-185
摘要
Mesoporous NiCo_2O_4@MnO_2 nanoneedle arrays as electrode materials for supercapacitor grown on a conductive nickel foam were prepared by a facile hydrothermal route. The interconnected mesoporous structure of the NiCo_2O_4 nanoneedle arrays provides a large specific surface area for charge storage.The electrochemically active MnO_2 nanoparticles covered on the surface of NiCo_2O_4 nanoneedle result in a favorable synergistic storage effect because of charge redistribution at the NiCo_2O_4|MnO_2 interface,which reduces the interfacial polarization and facilitates ion diffusion. The initial specific capacitance of NiCo_2O_4@MnO_2(S2) is 1001 F g~(-1) at current density of 15 A g~(-1). The capacity retention of S2 is about87.4% after 4000 cycles, and the specific capacitance of S2 electrode only decreases from 1001 F g~(-1) to736 F g~(-1) even after 10,000 cycles. The first-principles calculations show that a chemical bonding between the NiCo_2O_4 and MnO_2 is not only helpful for stabilizing the composites but also leads to a charge redistribution at the interface, which may lead to a smaller interfacial polarization and thus beneficial for the interfacial capacity. The excellent electrochemical performance of NiCo_2O_4@MnO_2 composites(S2)can be ascribed to the high surface area, unique architecture, MnO_2 nanoparticle modification, reduced charge transfer resistance and stable interface between NiCo_2O_4 and MnO_2. The simple material synthesis and architectural design strategy provides new insights in opportunities to exhibit promising potential for practical application in energy storage.
        Mesoporous NiCo_2O_4@MnO_2 nanoneedle arrays as electrode materials for supercapacitor grown on a conductive nickel foam were prepared by a facile hydrothermal route. The interconnected mesoporous structure of the NiCo_2O_4 nanoneedle arrays provides a large specific surface area for charge storage.The electrochemically active MnO_2 nanoparticles covered on the surface of NiCo_2O_4 nanoneedle result in a favorable synergistic storage effect because of charge redistribution at the NiCo_2O_4|MnO_2 interface,which reduces the interfacial polarization and facilitates ion diffusion. The initial specific capacitance of NiCo_2O_4@MnO_2(S2) is 1001 F g~(-1) at current density of 15 A g~(-1). The capacity retention of S2 is about87.4% after 4000 cycles, and the specific capacitance of S2 electrode only decreases from 1001 F g~(-1) to736 F g~(-1) even after 10,000 cycles. The first-principles calculations show that a chemical bonding between the NiCo_2O_4 and MnO_2 is not only helpful for stabilizing the composites but also leads to a charge redistribution at the interface, which may lead to a smaller interfacial polarization and thus beneficial for the interfacial capacity. The excellent electrochemical performance of NiCo_2O_4@MnO_2 composites(S2)can be ascribed to the high surface area, unique architecture, MnO_2 nanoparticle modification, reduced charge transfer resistance and stable interface between NiCo_2O_4 and MnO_2. The simple material synthesis and architectural design strategy provides new insights in opportunities to exhibit promising potential for practical application in energy storage.
引文
[1] X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016)967–984.
    [2] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4(2005)366–377.
    [3] J.R. Miller, P. Simon, Science 321(2008)651–652.
    [4] C.Z. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Energy Environ. Sci. 7(2012)7883–7887.
    [5] T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9(2010)146–151.
    [6] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328(2010)480–483.
    [7] D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47(2008)373–376.
    [8] W.J. Zhou, X. Cao, Z.Y. Zeng, W.H. Shi, Y.Y. Zhu, Q.Y. Yan, H. Liu, H. Zhang, Energy Environ. Sci. 6(2013)2216–2221.
    [9] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, J. Am. Chem. Soc. 132(2010)7472–7477.
    [10] T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Adv. Mater. 22(2010)347–351.
    [11] L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 22(2012)998–1004.
    [12] Q.Y. Liao, N. Li, S. Jin, X. Yang, G.W. Wang, C.X. Wang, ACS Nano 9(2015)5310–5317.
    [13] B.G. Zhu, S.C. Tang, S. Vongehr, H. Xie, X.K. Meng, ACS Appl. Mater. Interfaces8(2016)4762–4770.
    [14] S.D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J.P. Ferraris, Y.J. Chabal,K.J. Balkus, Adv. Energy Mater. 1(2011)936–945.
    [15] Y. Gao, L. Mi, W. Wei, S. Cui, Z. Zheng, H. Hou, W. Chen, ACS Appl. Mater.Interfaces 7(2015)4311–4319.
    [16] J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Carbon 48(2010)3825–3833.
    [17] B.G. Choi, M.H. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, ACS Nano 6(2012)4020–4028.
    [18] L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nano Lett. 13(2013)3135–3139.
    [19] X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, C.D. Gu, X.B. Zhao, H.J. Fan, ACS Nano6(2012)5531–5538.
    [20] R. Liu, S.B. Lee, J. Am. Chem. Soc. 130(2008)2942–2943.
    [21] Y.D. Zhang, B.P. Lin, Y. Sun, P. Han, J.C. Wang, X.J. Ding, X.Q. Zhang, H. Yang,Electrochim. Acta 188(2016)490–498.
    [22] M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16(2004)3184–3190.
    [23] L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11(2011)1215–1220.
    [24] H.L. Wang, Q.M. Gao, L. Jiang, Small 7(2011)2454–2459.
    [25] H. Jiang, J. Ma, C.Z. Li, Chem. Commun. 48(2012)4465–4467.
    [26] X.Y. Liu, Y.Q. Zhang, X.H. Xia, S.J. Shi, Y. Lu, X.L. Wang, C.D. Gu, J.P. Tu, J. Power Source 239(2013)157–163.
    [27] W. Wei, X.W. Cui, W.X. Chen, Chem. Soc. Rev. 40(2011)1697–1721.
    [28] S.J. Ding, T. Zhu, J.S. Chen, Z.Y. Wang, C.L. Yuan, X.W. Lou, J. Mater. Chem. 21(2011)6602–6606.
    [29] W. Chen, R.B. Rakhi, L.B. Hu, X. Xie, Y. Cui, Nano Lett. 11(2011)5165–5172.
    [30] J.H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins, A.J. Frank, Nano Lett. 10(2010)4099–4104.
    [31] M. Kuang, Z.Q. Wen, X.L. Guo, S.M. Zhang, Y.X. Zhang, J. Power Sources 270(2014)426–433.
    [32] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Mater. 22(2012)4592–4597.
    [33] F.Z. Deng, L. Yu, G. Cheng, T. Lin, M. Sun, F. Ye, Y.F. Li, J. Power Sources 251(2014)202–207.
    [34] F. Bao, Z. Zhang, W. Guo, X. Liu, Electrochim. Acta 157(2015)31–40.
    [35] Y. Zhou, L. Ma, M. Gan, M. Ye, X. Li, Y. Zhai, F. Cao, Appl. Surf. Sci. 444(2018)1–9.
    [36] J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater.23(2011)2076–2079.
    [37] X.H. Lu, T. Zhai, X.H. Zhang, Y.Q. Shen, L.Y. Yuan, B. Hu, L. Gong, J. Chen,Y.H. Gao, J. Zhou, Y.X. Tong, Z.L. Wang, Adv. Mater. 24(2012)938–944.
    [38] P.D. Battle, A.K. Cheetham, J.B. Goodenough, Mater. Res. Bull. 14(1979)1013–1024.
    [39] Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou, X. He, F. Lu, M. Jing, B. Tang, X. Ji, J.Aloys Compd. 617(2014)988–993.
    [40] L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, M. Srinivasan,Chem. Eur. J. 19(2013)5892–5898.
    [41] A. Kumara, A. Sanger, A. Kumar, Y. Kumar, R. Chandra, Electrochim. Acta 220(2016)712–720.
    [42] R. Zou, M.F. Yuen, Z. Zhang, J. Hu, W. Zhang, J. Mater. Chem. A 3(2015)1717–1723.
    [43] L. Su, L. Gao, Q. Du, L. Hou, Z. Ma, X. Qin, G. Shao, J. Alloys Compd. 749(2018)900–908.
    [44] H.W. Wang, X.F. Wang, ACS Appl. Mater. Interfaces 5(2013)6255–6260.
    [45] E. Umeshbabu, G. Rajeshkhanna, P. Justin, G. Ranga Rao, J. Solid State Electrochem 20(2016)2725–2736.
    [46] C. Hao, S. Zhou, J. Wang, X. Wang, H. Gao, C. Ge, Ind. Eng. Chem. Res. 57(2018)2517–2525.
    [47] C. Jin, F. Lu, X. Cao, Z. Yang, R. Yang, J. Mater. Chem. A 1(2013)12170–12177.
    [48] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate,O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 5(2006)987–994.
    [49] H.S. Zhou, D.L. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed. 44(2005)797–802.
    [50] T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Adv. Mater. 22(2010)347–351.
    [51] W. Zhu, Z.Y. Lu, G.X. Zhang, X.D. Lei, Z. Chang, J.F. Liu, X.M. Sun, J. Mater. Chem.A 1(2013)8327–8331.
    [52] J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater.23(2011)2075.
    [53] C.Y. Cui, J.T. Xu, L. Wang, D. Guo, M.L. Mao, J.M. Ma, T.H. Wang, ACS Appl.Mater. Interfaces 8(2016)8568–8575.
    [54] J.Z. Wu, X.Y. Li, Y.R. Zhu, T.F. Yi, J.H. Zhang, Y. Xie, Ceram. Int. 42(2016)9250–9256.
    [55] A. Huang, J. Yan, H. Zhang, X. Li, H. Zhang, J. Energy Chem 26(2017)121–128.
    [56] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett 6(2006)2690–2695.
    [57] W.L. Yang, Z. Gao, J. Ma, X.M. Zhang, J. Wang, J.Y. Liu, J. Mater. Chem. A 2(2014)1448–1457.
    [58] P.H. Yang, Y. Ding, Z.Y. Lin, Z.W. Chen, Y.Z. Li, P.F. Qiang, M. Ebrahimi, W.J. Mai,C.P. Wong, Z.L. Wang, Nano Lett. 14(2014)731–736.
    [59] K.M. Hercule, Q.L. Wei, A.M. Khan, Y.L. Zhao, X.C. Tian, L.Q. Mai, Nano Lett. 13(2013)5685–5691.
    [60] B.G. Zhu, S.C. Tang, S. Vongehr, H. Xie, X.K. Meng, ACS Appl. Mater. Interfaces8(2016)4762–4770.
    [61] G. Kresse, J. Hafner, Phys. Rev. B:Condens. Matter. 47(1993)558–561.
    [62] G. Kresse, J. Hafner, Phys. Rev. B:Condens. Matter. 49(1994)14251–14269.
    [63] J.P. Perdew, K. Burke, Phys. Rev. Lett. 77(1996)3865–3868.
    [64] R. Dronskowski, P.E. Blchl, J. Phys. Chem. 97(1993)8617–8624.
    [65] S. Maintz, V.L. Deringer, A.L. Tchougréeff, J. Comput. Chem. 34(2013)2557–2567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700