用户名: 密码: 验证码:
Probing primordial gravitational waves: Ali CMB Polarization Telescope
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Probing primordial gravitational waves: Ali CMB Polarization Telescope
  • 作者:Hong ; Li ; Si-Yu ; Li ; Yang ; Liu ; Yong-Ping ; Li ; Yifu ; Cai ; Mingzhe ; Li ; Gong-Bo ; Zhao ; Cong-Zhan ; Liu ; Zheng-Wei ; Li ; He ; Xu ; Di ; Wu ; Yong-Jie ; Zhang ; Zu-Hui ; Fan ; Yong-Qiang ; Yao ; Chao-Lin ; Kuo ; Fang-Jun ; Lu ; Xinmin ; Zhang
  • 英文作者:Hong Li;Si-Yu Li;Yang Liu;Yong-Ping Li;Yifu Cai;Mingzhe Li;Gong-Bo Zhao;Cong-Zhan Liu;Zheng-Wei Li;He Xu;Di Wu;Yong-Jie Zhang;Zu-Hui Fan;Yong-Qiang Yao;Chao-Lin Kuo;Fang-Jun Lu;Xinmin Zhang;Key Laboratory of Particle Astrophysics,Institute of High Energy Physics, Chinese Academy of Sciences;Theoretical Physics Division, Institute of High Energy Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,University of Scienceand Technology of China;Interdisciplinary Center for Theoretical Study, University of Science and Technology of China;National Astronomical Observatories, Chinese Academy of Sciences;Institute of Cosmology& Gravitation,University of Portsmouth;Key Laboratory of Particle Astrophysics,Institute of High EnergyPhysics, Chinese Academy of Sciences;Key Laboratory of Particle Astrophysics,Institute of High Energy Physics, ChineseAcademy of Sciences;Department of Astronomy, School of Physics, Peking University;Physics Department,Stanford University;
  • 英文关键词:primordial gravitational waves;;cosmic microwave background;;Ali CMB Polarization Telescope
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:Key Laboratory of Particle Astrophysics,Institute of High Energy Physics, Chinese Academy of Sciences;Theoretical Physics Division, Institute of High Energy Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,University of Scienceand Technology of China;Interdisciplinary Center for Theoretical Study, University of Science and Technology of China;National Astronomical Observatories, Chinese Academy of Sciences;Institute of Cosmology& Gravitation,University of Portsmouth;Key Laboratory of Particle Astrophysics,Institute of High EnergyPhysics, Chinese Academy of Sciences;Key Laboratory of Particle Astrophysics,Institute of High Energy Physics, ChineseAcademy of Sciences;Department of Astronomy, School of Physics, Peking University;Physics Department,Stanford University;
  • 出版日期:2019-01-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported in part by the National Natural Science Foundation of China(11653001,11653002,11653005,11653004);; the CAS pilot B project(XDB23020000);; the Sino–US cooperation project(2016YFE0104700)
  • 语种:英文;
  • 页:NASR201901028
  • 页数:10
  • CN:01
  • ISSN:10-1088/N
  • 分类号:151-160
摘要
In this paper, we will give a general introduction to the Ali CMB Polarization Telescope(Ali CPT) project,which is a Sino–US joint project led by the Institute of High Energy Physics and involves many different institutes in China. It is the first ground-based Cosmic Microwave Background(CMB) polarization experiment in China and an integral part of China's Gravitational-wave Program. The main scientific goal of the Ali CPT project is to probe the primordial gravitational waves(PGWs) originating from the very early Universe. The AliCPT project includes two stages. The first stage, referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet at an altitude of 5250 meters. Once completed, it will be the highest ground-based CMB observatory in the world and will open a new window for probing PGWs in the northern hemisphere. The AliCPT-1 telescope is designed to have about 7000 transition-edge sensor detectors at 95 GHz and 150 GHz. The second stage is to have a more sensitive telescope(Ali CPT-2) with more than 20 000 detectors. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio r by one order of magnitude with three years' observation. Besides the PGWs, Ali CPT will also enable a precise measurement of the CMB rotation angle and provide a precise test of the CPT symmetry. We show that three years' observation will improve the current limit by two orders of magnitude.
        In this paper, we will give a general introduction to the Ali CMB Polarization Telescope(Ali CPT) project,which is a Sino–US joint project led by the Institute of High Energy Physics and involves many different institutes in China. It is the first ground-based Cosmic Microwave Background(CMB) polarization experiment in China and an integral part of China's Gravitational-wave Program. The main scientific goal of the Ali CPT project is to probe the primordial gravitational waves(PGWs) originating from the very early Universe. The AliCPT project includes two stages. The first stage, referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet at an altitude of 5250 meters. Once completed, it will be the highest ground-based CMB observatory in the world and will open a new window for probing PGWs in the northern hemisphere. The AliCPT-1 telescope is designed to have about 7000 transition-edge sensor detectors at 95 GHz and 150 GHz. The second stage is to have a more sensitive telescope(Ali CPT-2) with more than 20 000 detectors. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio r by one order of magnitude with three years' observation. Besides the PGWs, Ali CPT will also enable a precise measurement of the CMB rotation angle and provide a precise test of the CPT symmetry. We show that three years' observation will improve the current limit by two orders of magnitude.
引文
1.LIGO Scientific and Virgo Collaborations.Observation of gravitational waves from a binary black hole merger.Phys Rev Lett2016;116:061102.
    2.LIGO Scientific and Virgo Collaborations.GW151226:observation of gravitational waves from a 22-solar-mass binary black hole coalescence.Phys Rev Lett 2016;116:241103.
    3.LIGO Scientific and Virgo Collaborations.GW170104:observation of a 50-solar-mass binary black hole coalescence at redshift0.2.Phys Rev Lett 2017;118:221101.
    4.LIGO Scientific and Virgo Collaborations.GW170814:a threedetector observation of gravitational waves from a binary black hole coalescence.Phys Rev Lett 2017;119:141101.
    5.LIGO Scientific and Virgo Collaborations.GW170817:observation of gravitational waves from a binary neutron star inspiral.Phys Rev Lett 2017;119:161101.
    6.BICEP2 Collaboration.Detection of B-mode polarization at degree angular scales by BICEP2.Phys Rev Lett 2014;112:241101.
    7.Planck Collaboration.Planck intermediate results.XXX.The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes.Astron Astrophys 2016;586:A133.
    8.Li YP,Liu Y and Li SY et al.Tibet’s Ali:a new window to detect the CMB polarization.arXiv:1709.09053[Search INSPIRE].
    9.Ye QZ,Su M and Li H et al.Tibet’s Ali:Asia’s Atacama?Mon Not Roy Astron Soc 2016;457:L1-4.
    10.Kuo CL.Assessments of Ali,Dome A,and Summit Camp for mm-wave observations using MERRA-2 reanalysis.Astrophys J 2017;848:64-75.
    11.Gao H,Liu CZ and Li ZW et al.Introduction to the detection technology of Ali CMB polarization telescope.Radiat Detect Technol Meth 2017;1:12.
    12.Guth AH.The inflationary universe:a possible solution to the horizon and flatness problems.Phys Rev D 1981;23:347-56;Starobinsky AA.A new type of isotropic cosmological models without singularity.Phys Lett B 1980;91:99-102;Sato K.First order phase transition of a vacuum and expansion of the universe.Mon Not Roy Astron Soc 1981;195:467-79;Linde AD.A new inflationary universe scenario:a possible solution of the horizon,flatness,homogeneity,isotropy and primordial monopole problems.Phys Lett B 1982;108:389-93;Albrecht A and Steinhardt PJ.Cosmology for grand unified theories with radiatively induced symmetry breaking.Phys Rev Lett 1982;48:1220-3.
    13.Tegmark M,Taylor A and Heavens A.Karhunen-Loeve eigenvalue problems in cosmology:how should we tackle large data sets?Astrophys J 1997;480:22-35.
    14.Lewis A,Chanllinor A and Lasenby A.Efficient computation of CMBanisotropies in closed FRW models.Astrophys J 2000;538:473-6.
    15.Planck Collaboration.Planck 2015 results.XIII.Cosmological parameters.Astron Astrophys 2016;594:A13.
    16.BICEP2 and Keck Array Collaborations.Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band.Phys Rev Lett 2016;116:031302.
    17.Linde AD.Chaotic inflation.Phys Lett B 1983;129:177-81.
    18.Mac Allister L,Silverstein E and Westphal A et al.The powers of monodromy.J High Energy Phys 2014;1409:123.
    19.Kallosh R,Linde A and Roest D et al.Superconformal inflationaryα-attractors.J High Energy Phys 2013;1311:198.
    20.Penrose R.Gravitational collapse and space-time singularities.Phys Rev Lett1965;14:57-9;Hawking SW and Penrose R.The singularities of gravitational collapse and cosmology.Proc Roy Soc Lond A 1970;314:529-48.
    21.Borde A and Vilenkin A.Eternal inflation and the initial singularity.Phys Rev Lett 1994;72:3305-9.
    22.Novello M and Bergliaffa SEP.Bouncing cosmologies.Phys Rep 2008;463:127-213;Cai YF.Exploring bouncing cosmologies with cosmological surveys.Sci China Phys Mech Astron 2014;57:1414-30;Battefeld D and Peter P.Acritical review of classical bouncing cosmologies.Phys Rep 2015;571:1-66;Brandenberger R and Peter P.Bouncing cosmologies:progress and problems.Found Phys 2017;47:797-850.
    23.Khoury J,Ovrut BA and Steinhardet PJ et al.The ekpyrotic universe:colliding branes and the origin of the hot big bang.Phys Rev D 2001;64:123522;Lehners JL.Ekpyrotic and cyclic cosmology.Phys Rep 2008;465:223-63.
    24.Ellis GFR and Maartens R.The emergent universe:inflationary cosmology with no singularity.Class Quantum Gravity 2004;21:223-32;Ellis GFR,Murugan Jand Tsagas CG.The emergent universe:an explicit construction.Class Quantum Gravity 2004;21:233-50.
    25.Cohen AG and Kaplan DB.Spontaneous baryogenesis.Nucl Phys B 1988;308:913-28.
    26.Li M,Wang X and Feng B et al.Quintessence and spontaneous leptogenesis.Phys Rev D 2002;65:103511.
    27.Carroll SM,Field GB and Jackiw R.Limits on a Lorentz and parity violating modification of electrodynamics.Phys Rev D 1990;41:1231-40;Carroll SM.Quintessence and the rest of the world.Phys Rev Lett 1998;81:3067-70.
    28.Li M,Xia JQ and Li H et al.Cosmological CPT violation,baryo/leptogenesis and CMB polarization.Phys Lett B 2007;651:357-62.
    29.Davoudiasl H,Kitano R and Kribs GD et al.Gravitational baryogenesis.Phys Rev Lett 2004;93:201301.
    30.Li H,Li M and Zhang X.Gravitational leptogenesis and neutrino mass limit.Phys Rev D 2004;70:047302.
    31.Lue A,Wang LM and Kamionkowski M.Cosmological signature of new parity violating interactions.Phys Rev Lett 1999;83:1506-9.
    32.Feng B,Li H and Li MZ et al.Gravitational leptogenesis and its signatures in CMB.Phys Lett B 2005;620:27-32.
    33.Feng B,Li M and Xia JQ et al.Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG.Phys Rev Lett 2006;96:221302.
    34.Cabella P,Natoli P and Silk J.Constraints on CPT violation from WMAP three year polarization data:a wavelet analysis.Phys Rev D 2007;76:123014.
    35.WMAP Collaboration.Five-year Wilkinson Microwave Anisotropy Probe(WMAP)observations:cosmological interpretation.Astrophys J Suppl 2009;180:330-76.
    36.WMAP Collaboration.Seven-year Wilkinson Microwave Anisotropy Probe(WMAP)observations:cosmological interpretation.Astrophys J Suppl 2011;192:18.
    37.WMAP Collaboration.Nine-year Wilkinson Microwave Anisotropy Probe(WMAP)observations:cosmological parameter results.Astrophys J Suppl2013;208:19.
    38.QUa D Collaboration.Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUa D polarimeter.Phys Rev Lett 2009;102:161302.
    39.BICEP1 Collaboration.Self-calibration of BICEP1 three-year data and constraints on astrophysical polarization rotation.Phys Rev D 2014;89:062006.
    40.Xia JQ,Li H and Zhang X.Probing CPT violation with CMB polarization measurements.Phys Lett B 2010;687:129-32.
    41.POLARBEAR Collaboration.A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLAR-BEAR.Astrophys J 2014;794:171.
    42.ACTPol Collaboration.The Atacama Cosmology Telescope:CMB polarization at200    43.Planck Collaboration.Planck intermediate results.XLIX.Parity-violation constraints from polarization data.Astron Astrophys 2016;596:A110.
    44.Lewis A and Bridle S.Cosmological parameters from CMB and other data:a Monte Carlo approach.Phys Rev D 2002;66:103511.
    45.Planck Collaboration.Planck 2015 results.XVI.Isotropy and statistics of the CMB.Astron Astrophys 2016;594:A16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700