用户名: 密码: 验证码:
高压下不同n(H_2)∶n(CO)合成气燃烧的NO生成机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NO Formation in Syngas Coflow Diffusion Flame with Different n(H_2):n(CO) at Elevated Pressure
  • 作者:席剑飞 ; 袁也 ; 顾中铸 ; 张先鹏 ; 王生福
  • 英文作者:XI Jianfei;YUAN Ye;GU Zhongzhu;ZHANG Xianpeng;WANG Shengfu;Engineering Laboratory for Energy System Process Conversion and Emission Control Technology of Jiangsu Province;School of Energy and Mechanical Engineering,Nanjing Normal University;
  • 关键词:合成气 ; 扩散火焰 ; NO生成 ; 压力 ; 数值模拟
  • 英文关键词:syngas;;diffusion flame;;NO formation;;pressure;;numerical simulation
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:江苏省能源系统过程转化与减排技术工程实验室;南京师范大学紫金校区能源与机械工程学院;
  • 出版日期:2018-03-15
  • 出版单位:煤炭转化
  • 年:2018
  • 期:v.41;No.162
  • 基金:国家自然科学基金资助项目(51706107);; 江苏省高校自然科学研究面上项目(16KJB470011);; 江苏省产学研联合创新资金项目(BY2013001-02)
  • 语种:中文;
  • 页:MTZH201802005
  • 页数:7
  • CN:02
  • ISSN:14-1163/TQ
  • 分类号:34-40
摘要
针对H_2/CO合成气同向扩散火焰展开研究,考察了合成气燃烧生成NO的情况,使用Fluent软件对燃烧实验进行了1∶1的数值模拟研究.耦合了详细化学动力学模型以考察燃烧过程中的NO生成机理,研究不同压力与不同n(H_2)∶n(CO)比条件下合成气燃烧特性与污染物排放特性,为实际燃烧设备的设计和优化提供理论指导.结果表明,随着压力的增加,H_2/CO合成气同向扩散火焰的峰值温度单调增加,压力越高增加趋势越平缓.同时主要的污染物NO生成量也随着压力的增加而显著增加,其中热力型NO占主导地位.此外,随着H_2/CO合成气同向扩散火焰中氢气体积分数的增加,合成气同向火焰中产生的NO污染物和火焰峰值温度也有明显的增加.
        The experimental research and theoretical analysis on the pollution formation of n(H_2)∶n(CO)syngas coflow diffusion flame was carried out.The numerical work was done by Fluent coupled with detailed reaction mechanism.The formation route of NO was investigated.In order to provide guidance for the design and optimization of combustion equipment,the pollution formation during combustion of syngas with different n(H_2)∶n(CO)at different pressure was studied.The results show that the peak flame temperature of H_2/CO syngas coflow diffusion flame increases obviously with the increase of pressure.The NO formation shows the same trend.The NO produced through thermal route dominates the variation trend.Besides,NO formation increases with the n(H_2)∶n(CO)ratio in syngas coflow flame.
引文
[1]RANGA DINESH K K J,OIJEN J A V,LUO K H.Nitric Oxide Pollutant Formation in High Hydrogen Content(HHC)Syngas Flames[J].Hydrogen Energy,2015,40:13621-13634.
    [2]刘波,吴雨,王元华,等.低NOx工业燃气燃烧技术研究进展[J].化工进展,2013,32(1):199-204.LIU Bo,WU Yu,WANG Yuanhua,et al.Research Progress on Low-NOxIndustrial Gas Combustion Technology[J].Chemical Industry and Engineering Progress,2013,32(1):199-204.
    [3]高林,李辉,单历元,等.燃烧烟气脱硝技术的研究进展[J].化学工程,2017,45(3):15-19.GAO Lin,LI Hui,SHAN Liyuan,et al.Technology Status and Analysis on Fired Flue Gas Denitrification[J].Chemical Engineering(China),2017,45(3):15-19.
    [4]卞潮渊,慕韩锋.基于煤和天然气联合制取合成气工艺研究进展[J].化工进展,2016,35(10):3136-3145.BIAN Chaoyuan,MU Hanfeng.Research Progress Based on Coal and Natural Gas to Produce Syngas[J].Chemical Industry and Engineering Progress,2016,35(10):3136-3145.
    [5]LEE MIN CHU.Effects of H2/CO/CH4Syngas Composition Variation on the NOxand CO Emission Characteristics in a Partially-premixed Gasturbine Combustor[J].Technological Sciences,2016,59(12):1804-1813.
    [6]陶志强,艾育华,孔文俊.高压下CO2稀释的CO/H2/Air火焰贫可燃极限处的辐射重吸收效应的数值研究[J].工程热物理学报,2012,33(7):1243-1246.TAO Zhiqiang,AI Yuhua,KONG Wenjun.Numerical Investigation of Radiation Re-absorption Influences on Flame Behaviors of CO/H2/Air Mixtures with CO2Diluted Near Lean Flammability Limits at High Pressure[J].Journal of Engineering Thermophysics,2012,33(7):1243-1246.
    [7]ZHANG Yongsheng,YANG Tianming,LIU Xueqi,et al.Reduction of Emissions from a Syngas Flame Using Micromixing and Dilution with CO2[J].Energy and Fuels,2012,26:6595-6601.
    [8]ZHOU Yajun,WANG Zhihua,HE Yong,et al.Effects of CH4 Content on NO Formation in One-dimensional Adiabatic Flames Investigated by Saturated Laser-induced Fluorescence and CHEMKIN Modeling[J].Energy and Fuels,2017,31:3154-3163.
    [9]付忠广,卢可,周扬,等.氮气稀释富氢合成气高压燃烧特性数值模拟[J].热力发电,2014,43(11):19-28.FU Zhongguang,LU Ke,ZHOU Yang,et al.Numerical Study on Combustion Characteristics of Nitrogen Diluted Hydrogenrich Syngas at High Pressures[J].Thermal Power Generation,2014,43(11):19-28.
    [10]李洪萌.合成气层流预混燃烧特性的研究[D].北京:北京交通大学,2012.LI Hongmeng.Research on Laminar Burning Characteristic of Syngas-air Premixed Flame[D].Beijing:Beijing Jiaotong University,2012.
    [11]HAN Minchao,AI Yuhua,ZHEN Cheng,et al.Laminar Flame Speeds of H2/CO with CO2Dilution at Normal and Elevated Pressures and Temperature[J].Fuel,2015,148:32-35.
    [12]DAVIS S G,JOSHIA A V,WANG Hai,et al.An Optimized Kinetic Model of H2/CO Combustion[J].Proceeding of the Combustion Institute,2005,30:1283-1292.
    [13]KEROMNES Alan,WAYNE K Metcalfe,KARL A Heufer.An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures[J].Flame and Combustion,2013,160:995-1011.
    [14]PARK J,BAE D S,CHA M S,et al.Flame Characteristics in H2/CO Synthetic Gas Diffusion Flames Diluted with CO2:Effects of Radiative Heat Loss and Mixture Composition[J].Hydrogen Energy,2008,33:7256-7264.
    [15]解天放.层流小火焰模型在湍流扩散火焰数值模拟中的应用[D].厦门:厦门大学,2014.XIE Tianfang.Application of the Laminar Flamelet Model for Numerical Simulation of Diffusion Turbulent Combustion[D].Xiamen:Xiamen University,2014.
    [16]张引弟,周怀春,谢明亮.湍流扩散火焰的大涡模拟及验证[J].动力工程,2009,29(5):451-455.ZHANG Yindi,ZHOU Huaichun,XIE Mingliang.Large Eddy Simulation and Verification for Turbulent Diffusion Flame[J].Chinese Journal of Power Engineering,2009,29(5):451-455.
    [17]MILLER J A,BOWMAN C T.Erratum:Mechanism and Modeling of Nitrogen Chemistry in Combustion[J].Progress in Energy&Combustion Science,1990,16(4):287-338.
    [18]ZELDOCIH Y B.The Oxidation of Nitrogen in Combustion and Explosions[J].Acta Physicochim,1946(21):577-628.
    [19]FENIMORE C P.Formation of Nitric Oxide in Premixed Hydrocarbon Flames[J].Symposium Combust,1971,13:373-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700