用户名: 密码: 验证码:
基于火焰OH自发光技术的贫燃旋流预混燃烧吹熄机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Blow-Out Mechanism of Lean-Premixed Swirl Flame Combustion Based on Flame OH Chemiluminescence Technology
  • 作者:赵晓敏 ; 葛宏达 ; 王俊懿 ; 徐维 ; 周一卉
  • 英文作者:Zhao Xiaomin;Ge Hongda;Wang Junyi;Xu Wei;Zhou Yihui;School of Chemical Machinery and Safety,Dalian University of Technology;
  • 关键词:OH自发光 ; 贫燃旋流预混燃烧 ; 火焰不稳定性 ; 火焰表面密度 ; 进度变量
  • 英文关键词:OH chemiluminescence;;lean-premixed swirl combustion;;flame instability;;flame surface density;;progress variable
  • 中文刊名:RSKX
  • 英文刊名:Journal of Combustion Science and Technology
  • 机构:大连理工大学化工机械与安全学院;
  • 出版日期:2019-06-11
  • 出版单位:燃烧科学与技术
  • 年:2019
  • 期:v.25;No.133
  • 基金:中央高校基本科研业务费资助项目(DUT17GJ205)
  • 语种:中文;
  • 页:RSKX201903008
  • 页数:7
  • CN:03
  • ISSN:12-1240/TK
  • 分类号:60-66
摘要
利用火焰OH自发光技术研究了湍流状态下贫燃旋流预混燃烧的吹熄过程,获取了不同当量比下的平均火焰图像、瞬时火焰图像、二维火焰表面密度和OH平均强度.将当量比从0.90降低至0.46,即由火焰的稳定燃烧状态转变至临界吹熄状态,火焰由中间凹陷的紧缩形变为柱状.当量比位于0.90~0.55时,火焰表面密度下降约10%,可以认为此时火焰处于稳定燃烧状态.当量比位于0.55~0.50时,进度变量最大值从1.0变为0.5,说明火焰锋面处于强烈脉动中,且OH强度骤降约为67%.通过观察OH强度突变区域内的瞬时火焰图像,发现火焰锋面经历了脱离钝体、向燃烧室下游移动,再燃的往复过程.最后比较了不同旋流数(0.45、0.61和0.90)对于OH强度突变区间的影响,结果表明旋流数对于该区间的影响并不明显.
        Using the OH chemiluminescence technology,we conducted an experiment to study the blow-out process of lean-premixed swirl combustion in a turbulent state.The average flame image,instantaneous flame image,two-dimensional flame surface density and average OH intensity were obtained at different equivalent ratios.When the equivalent ratio was reduced from 0.90 to 0.46,the flame transformed from a stable combustion state to being close to blow-off,during which the flame changed from a compression in the middle to a columnar shape.When the equivalent ratio was between 0.90 and 0.55,the flame surface density decreased by about 10%,indicating that the flame was in a stable combustion state.When the equivalent ratio was between 0.55 and 0.50,the maximum of the progress variable changed from 1.0 to 0.5,indicating that the flame front was under strong pulsation. Moreover,the OH intensity dropped to about 67% suddenly.By observing the instantaneous flame image in the transition interval of OH intensity,we found that the flame front experienced a reciprocating process of breaking away from the bluff body,moving to the downstream of the combustion chamber,and reburning.Finally,the effects of different swirl numbers(i.e.,0.45,0.61 and 0.90)on the transition interval of OH intensity were compared,showing that the influence of swirl number on this interval was not obvious.
引文
[1]陈永辰.贫油预混燃烧火焰不稳定性机理的研究综述[C]//中国动力工程学会透平专业委员会2007年学术研讨会.上海,2007:6.Chen Yongchen.Review of flame instability in premixed combustion of lean oil[C]//2007 Symposium of Turbine Professional Committee of China Dynamic Engineering Society.Shanghai,China,2007:6(in Chinese).
    [2]Chaudhuri S,Kostka S,Renfro M W,et al.Blowoff dynamics of bluff body stabilized turbulent premixed flames[J].Combustion&Flame,2010,157(4):790-802.
    [3]Kariuki J,Dowlut A,Yuan R,et al.Heat release imaging in turbulent premixed methane-air flames close to blow-off[J].Proceedings of the Combustion Institute,2015,35(2):1443-1450.
    [4]Shanbhogue Santosh J,Husain Sajjad,Lieuwen Tim.Lean blowoff of bluff body stabilized flames:Scaling and dynamics[J].Progress in Energy and Combustion Science,2009,35(1):98-120.
    [5]Kariuki J,Dawson J R,Mastorakos E.Measurements in turbulent premixed bluff body flames close to blow-off[J].Combustion&Flame,2012,159(8):2589-2607.
    [6]Kedia Kushal S,Ghoniem Ahmed F.The blow-off mechanism of a bluff-body stabilized laminar premixed flame[J].Combustion&Flame,2015,162(4):1304-1315.
    [7]Dawson J R,Gordon R L,Kariuki J,et al.Visualization of blow-off events in bluff-body stabilized turbulent premixed flames[J].Proceedings of the Combustion Institute,2011,33(1):1559-1566.
    [8]Cavaliere D E,Kariuki James,Mastorakos Epaminondas.A comparison of the blow-off behaviour of swirlstabilized premixed,non-premixed and spray flames[J].Flow Turbulence&Combustion,2013,91(2):347-372.
    [9]St?hr M,Boxx I,Carter C,et al.Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor[J].Proceedings of the Combustion Institute,2011,33(2):2953-2960.
    [10]St?hr M,Arndt C M,Meier W.Effects of Damk?hler number on vortex-flame interaction in a gas turbine model combustor[J].Proceedings of the Combustion Institute,2013,34(2):3107-3115.
    [11]Choi O,Min C L.Investigation into the combustion instability of synthetic natural gases using high speed flame images and their proper orthogonal decomposition[J].International Journal of Hydrogen Energy,2016,41(45):20731-20743.
    [12]Lieuwen T,Mcdonell V,Petersen E,et al.Fuel flexibility influences on premixed combustor blowout,flashback,autoignition,and stability[J].Journal of Engineering for Gas Turbines&Power,2008,130(1):601-615.
    [13]Lachauxa T,Haltera F,Chauveaua C,et al.Flame front analysis of high-pressure turbulent lean premixed methane-air flames[J].Proceedings of the Combustion Institute,2005,30(1):819-826.
    [14]李国能,周昊,李时宇,等.化学当量比对旋流燃烧器热声不稳定特性的影响[J].中国电机工程学报,2008,28(8):18-23.Li Guoneng,Zhou Hao,Li Shiyu,et al.Effect of chemical equivalent ratio on thermoacoustic instability of swirl burner[J].Chinese Journal of Electrical Engineering,2008,28(8):18-23(in Chinese).
    [15]Wright F H.Bluff-body flame stabilization:Blockage effects[J].Combust Flame,1959,3:319-337.
    [16]Filippi F,Fabbrovich-Mazza L.Control of bluff-body flameholder stability limits[J].Proc Combust Inst,1961,8:956-963.
    [17]Yamaguchi S,Ohiwa N,Hasegawa T.Structure and blow-off mechanism of rod-stabilized premixed flame[J].Combust Flame,1985,62:31-41.
    [18]Jerzak W,Ku?nia M.Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off[J].Journal of Natural Gas Science&Engineering,2016,29:46-54.
    [19]Dawson J R,Gordon R L,Kariuki J,et al.Visualization of blow-off events in bluff-body stabilized turbulent premixed flames[J].Proc Combust Inst,2011,33:1559-1566.
    [20]魏星.贫燃预混燃烧火焰形态与流场研究[D].大连:大连理工大学化工机械与安全学院,2017.Wei Xing.Study on Flame Morphology and Flow Field of Lean Premixed Combustion[D].Dalian:School of Chemical Machinery and Safety,Dalian University of Technology,2017(in Chinese).
    [21]许洪雪.贫燃预混旋流火焰的非稳态燃烧行为研究[D].大连:大连理工大学化工机械与安全学院,2014.Xu Hongxue.Study on Unsteady Combustion Behavior of Lean Premixed Swirl Flame[D].Dalian:School of Chemical Machinery and Safety,Dalian University of Technology,2014(in Chinese).
    [22]樊艳娜.贫旋流预混燃烧室回火行为实验研究[D].大连:大连理工大学化工机械与安全学院,2016.Fan Yanna.Experimental Study on Flashback of Lean Premixed Swirl-Stablized Combustor[D].Dalian:School of Chemical Machinery and Safety,Dalian University of Technology,2016(in Chinese).
    [23]Halter F,Chauveau C,G?kalp I,et al.Analysis of flame surface density measurements in turbulent premixed combustion[J].Combustion&Flame,2009,156(3):657-664.
    [24]李红,李博,高强,等.OH/CH2O基于PLIF测量得到的火焰面密度比较研究[J].燃烧科学与技术,2018,24(6):523-527.Li Hong,Li Bo,Gao Qiang,et al.Plane laser-induced fluorescence for flame surface density calculation of OH/CH2O:A comparative study[J].Journal of Combustion Science and Technology,2018,24(6):523-527(in Chinese).
    [25]Shepherd I G.Flame surface density and burning rate in premixed turbulent flames[J].Proc Combust Inst,1996,26:373-379.
    [26]张锰,王金华,谢永亮,等.利用OH-PLIF测量CH4/H2/空气混合气湍流燃烧速率[J].燃烧科学与技术,2013,19(6):512-516.Zhang Meng,Wang Jinhua,Xie Yongliang,et al.Measurement of turbulent burning velocity of CH4/H2/air mixtures using OH-PLIF[J].Journal of Combustion Science&Technology,2013,19(6):512-516(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700