用户名: 密码: 验证码:
High Initial Reversible Capacity and Long Life of Ternary SnO_2?Co?carbon Nanocomposite Anodes for Lithium?Ion Batteries
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Initial Reversible Capacity and Long Life of Ternary SnO_2?Co?carbon Nanocomposite Anodes for Lithium?Ion Batteries
  • 作者:Pan ; Deng ; Jing ; Yang ; Shengyang ; Li ; Tian?E ; Fan ; Hong?Hui ; Wu ; Yun ; Mou ; Hui ; Huang ; Qiaobao ; Zhang ; Dong?Liang ; Peng ; Baihua ; Qu
  • 英文作者:Pan Deng;Jing Yang;Shengyang Li;Tian?E Fan;Hong?Hui Wu;Yun Mou;Hui Huang;Qiaobao Zhang;Dong?Liang Peng;Baihua Qu;Pen?Tung Sah Institute of Micro?Nano Science and Technology, Department of Materials Science and Engineering, College of Materials, Xiamen University;College of Automation and Key Laboratory of Industrial Internet of Things and Networked Control,Ministry of Education, Chongqing University of Posts and Telecommunications;Department of Chemistry, University of Nebraska?Lincoln;School of Mechanical Science and Engineering, Huazhong University of Science and Technology;
  • 英文关键词:Ultrafine SnO_2 nanostructures;;ZIF?67 frameworks;;Enhanced initial Coulombic efficiency;;Reversible conversion reaction
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:Pen?Tung Sah Institute of Micro?Nano Science and Technology, Department of Materials Science and Engineering, College of Materials, Xiamen University;College of Automation and Key Laboratory of Industrial Internet of Things and Networked Control,Ministry of Education, Chongqing University of Posts and Telecommunications;Department of Chemistry, University of Nebraska?Lincoln;School of Mechanical Science and Engineering, Huazhong University of Science and Technology;
  • 出版日期:2019-03-15
  • 出版单位:Nano-Micro Letters
  • 年:2019
  • 期:v.11
  • 基金:supported by the National Key R&D Program of China (No. 2016YFA0202602);; the National Natural Science Foundation of China (Grant Nos. 21503178 and 21703185);; supported by XMU Undergradu? ate Innovation and Entrepreneurship Training Programs (Grants No. 2017X0695 for Huijiao Yang and Xiaocong Tang)
  • 语种:英文;
  • 页:NANO201901018
  • 页数:13
  • CN:01
  • ISSN:31-2103/TB
  • 分类号:326-338
摘要
The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic e ciency(ICE). To overcome these limitations, we developed composites of ultrafine SnO_2 nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N?doped carbon matrix using a Co?based metal–organic framework(ZIF?67). The formed Co additives and structural advantages of the carbon?confined SnO_2/Co nanocomposite e ectively inhibited Sn coarsening in the lithiated SnO_2 and mitigated its structural degradation while facilitating fast electronic transport and facile ionic di usion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability(~ 800 mAh g~(-1) at a high current density of 5 A g~(-1)), and long?term cycling stability(~ 760 mAh g~(-1) after 400 cycles at a current density of 0.5 A g~(-1)). This study will be helpful in developing high?performance Si(Sn)?based oxide, Sn/Sb?based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF?67 can also be used as composite templates.
        The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic e ciency(ICE). To overcome these limitations, we developed composites of ultrafine SnO_2 nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N?doped carbon matrix using a Co?based metal–organic framework(ZIF?67). The formed Co additives and structural advantages of the carbon?confined SnO_2/Co nanocomposite e ectively inhibited Sn coarsening in the lithiated SnO_2 and mitigated its structural degradation while facilitating fast electronic transport and facile ionic di usion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability(~ 800 mAh g~(-1) at a high current density of 5 A g~(-1)), and long?term cycling stability(~ 760 mAh g~(-1) after 400 cycles at a current density of 0.5 A g~(-1)). This study will be helpful in developing high?performance Si(Sn)?based oxide, Sn/Sb?based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF?67 can also be used as composite templates.
引文
1.Global EV Outlook 2018, International Energy Agency. https://www.iea.org/gevo2 018/
    2 .J.S. Chen, X.W. Lou,SnO2?based nanomaterials:synthesis and application in lithium?ion batteries. Small 9(11), 1877–1893(2013). https://doi.org/10.1002/smll.20120 2601
    3 .X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template?free synthesis ofSnO2 hollow nanostructures with high lith?ium storage capacity. Adv. Mater. 18(17), 2325–2329(2006).https://doi.org/10.1002/adma.20060 0733
    4 .Y.F.Deng,C.C.Fang,G.H.Chen,Thedevelopments ofSnO2/graphenenanocompositesasanodematerialsfor high performance lithium ion batteries:a review. J. Power Sources 304, 81–101(2016). https://doi.org/10.1016/j.jpows our.2015.11.017
    5 .D.H. Liu, F. Xie, J. Lyu, T.K. Zhao, T.H. Li, B.G. Choi, Tin?based anode materials with well?designed architectures for next generation lithium?ion batteries. J. Power Sources 321,11 –35(2016). https://doi.org/10.1016/j.jpows our.2016.04.105
    6 .Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T.M. Iyasaka,Tin?based amorphous oxides:a high?capacity lithium?ion?stor?age material. Science 276(5317), 1395–1697(1997). https://doi.org/10.1126/scien ce.276.5317.1395
    7 .J.Y. Huang, Z. Li, C.M. Wang, J.P. Sullivan, S.X. Mao, N.S.Hudak et al., In situ observation of the electrochemical lithia?tion of a singleSnO2 nanowire electrode. Science 330(6010),1515–1519(2010). https://doi.org/10.1126/scien ce.11956 28
    8 .X. Hu, G. Wang, B. Wang, X. Liu, H. Wang,Co3Sn2/SnO2heterostructures building double shell micro?cubes wrapped in three?dimensional graphene matrix as promising anode materials for lithium?ion and sodium?ion batteries. Chem.Eng.J.355,986–998(2018).https://doi.org/10.1016/j.cej.2018.07.173
    9 .X. Zhou, L.J. Wan, Y.G. Guo, BindingSnO2 nanocrystals innitrogen?dopedgraphenesheetsasanodematerialsfor lithium?ion batteries. Adv. Mater. 25(15), 2152–2157(2013).https://doi.org/10.1002/adma.20130 0071
    10 .W. Ai, Z. Huang, L. Wu, Z. Du, C. Zou, Z. He, R. Shahbazian?Yassar, W. Huang, T. Yu, High?rate, long cycle?life Li?ion battery anodes enabled by ultrasmall tin?based nanoparticlesencapsulation. Energy Storage Mater. 14, 169–178(2018).https://doi.org/10.1016/j.ensm.2018.02.008
    11 .R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., Dra?matically enhanced reversibility ofLi2O inSnO2?based elec?trodes:the e ect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9(2), 595–603(2016). https://doi.org/10.1039/C5EE0 3367E
    12 .L. Zhang, H.B. Wu, B. Liu, X.W. Lou, Formation of porous SnO2 microboxes via selective leaching for highly revers?ible lithium storage. Energy Environ. Sci. 7(3), 1013–1017(2014). https://doi.org/10.1039/c3ee4 3305f
    13 .W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes e cient lithium?ion batteries possible. Adv. Mater. 29(24), 1700136(2017). https://doi.org/10.1002/adma.20170 0136
    14 .C. Miao, M. Liu, Y.?B. He, X. Qin, L. Tang et al., Mono?dispersedSnO2nanospheresembeddedinframeworkof graphene and porous carbon as anode for lithium ion bat?teries. Energy Storage Mater. 3, 98–105(2016). https://doi.org/10.1016/j.ensm.2016.01.006
    15 .L.P.Wang,Y.Leconte,Z.Feng,C.Wei,Y.Zhaoetal.,Novel preparation of N?dopedSnO2 nanoparticles via laser?assistedpyrolysis:demonstrationofexceptionallithium storage properties. Adv. Mater. 29(6), 1603286(2017). https://doi.org/10.1002/adma.20160 3286
    16 .J. Han, D. Kong, W. Lv, D.M. Tang, D. Han et al., Caging tin oxide in three?dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9(1), 402(2018).https://doi.org/10.1038/s4146 7?017?02808?2
    17 .J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma,Growth ofSnO2 nanoflowers on N?doped carbon nanofibers as anode for Li?and Na?ion batteries. Nano?MICRO Lett.10 , 21(2018). https://doi.org/10.1007/s4082 0?017?0172?2
    18 .B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin,Polymer?templated formation of polydopamine?coatedSnO2nanocrystals:anodesforcyclablelithium?ionbatteries.Angew. Chem. Int. Ed. 56(7), 1869–1872(2017). https://doi.org/10.1002/anie.20161 1160
    19 .D. Zhou, W.L. Song, L.Z. Fan, Hollow core?shellSnO2/C fibers as highly stable anodes for lithium?ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478(2015). https://doi.org/10.1021/acsam i.5b065 12
    20 .X. Zhou, L. Yu, X.W. Lou, Formation of uniform n?doped carbon?coatedSnO2 submicroboxes with enhanced lithium storageproperties.Adv.EnergyMater.6(14),1600451(2016). https://doi.org/10.1002/aenm.20160 0451
    21 .L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao,FlexibleSnO2/N?doped carbon nanofiber films as integrated electrodes for lithium?ion batteries with superior rate capac?ity and long cycle life. Small 12(7), 853–859(2016). https://doi.org/10.1002/smll.20150 3315
    22 .L. Zu, Q. Su, F. Zhu, B. Chen, H. Lu, Antipulverization elec?trode based on low?carbon triple?shelled superstructures for lithium?ion batteries. Adv. Mater. 29(34), 1701494(2017).https://doi.org/10.1002/adma.20170 1494
    23.R. Huang, L.J. Wang, Q. Zhang, Z. Li, D.Y. Pan, B. Zhao,M.H. Wu et al., Irradiated graphene loaded withSnO2 quan?tum dots for energy storage. ACS Nano 9(11), 11351–11361(2015). https://doi.org/10.1021/acsna no.5b051 46
    24 .R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan,M. Zhu, Unveiling critical size of coarsened Sn nanograins for achieving high round?trip e ciency of reversible con?versionreactioninlithiatedSnO2nanocrystals.Nano Energy 45, 255–265(2018). https://doi.org/10.1016/j.nanoe n.2018.01.007
    25 .R. Hu, Y. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L.Zhang, L. Yang, M. Zhu, Inhibiting grain coarsening and inducing oxygen vacancies:the roles of Mn in achieving a highly reversible conversion reaction and a long lifeSnO2–Mn?graphite ternary anode. Energy Environ. Sci. 10(9), 2017–2029(2017). https://doi.org/10.1039/C7EE0 1635B
    26 .R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C.Yang, L. Yang, M. Zhu, Stabilizing the nanostructure ofSnO2anodes by transition metals:a route to achieve high initial coulombic e ciency and stable capacities for lithium storage.Adv. Mater. 29(13), 1605006(2017). https://doi.org/10.1002/adma.20160 5006
    27 .J. Huang, Y. Ma, Q. Xie, H. Zheng, J. Yang, L. Wang, D.L.Peng, 3D graphene encapsulated hollowCoSnO3 nanoboxes as a high initial coulombic e ciency and lithium storage capacity anode. Small 14(10), 1703513(2018). https://doi.org/10.1002/smll.20170 3513
    28 .Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu,L. Mai, Solvent?free synthesis of uniform MOF shell?derived carbon confinedSnO2/Co nanocubes for highly reversible lithium storage. Small 13(37), 1701504(2017). https://doi.org/10.1002/smll.20170 1504
    29 .J.W. Deng, C.L. Yan, C. Yang, S. Baunack, S. Oswald, H.Wendrock, Y.F. Mei, O.G. Schmidt, Sandwich?stackedSnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries.ACSNano7(8),6948–6954(2013).https://doi.org/10.1021/nn402 164q
    30 .C. Kim, J.W. Jung, K.R. Yoon, D.Y. Youn, S. Park, I.D. Kim,A high?capacity and long?cycle?life lithium?ion battery anode architecture:silver nanoparticle?decoratedSnO2/NiO nano?tubes. ACS Nano 10(12), 11317–11326(2016). https://doi.org/10.1021/acsna no.6b065 12
    31 .G. Ji, Y. Ma, B. Ding, J.Y. Lee, Improving the performance of high capacity Li?ion anode materials by lithium titanate sur?face coating. Chem. Mater. 24(17), 3329–3334(2012). https://doi.org/10.1021/cm301 432w
    32 .H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang,Enabling a highly reversible conversion reaction in a lithiated nano?SnO2 film coated withAl2O3 by atomic layer deposi?tion. J. Mater. Chem. A 6(10), 4374–4385(2018). https://doi.org/10.1039/C8TA0 0290H
    33 .Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan et al., Sn nanopar?ticles encapsulated in 3D nanoporous carbon derived from a metal?organic framework for anode material in lithium?ion batteries. ACS Appl. Mater. Interfaces 9(20), 17172–17177(2017). https://doi.org/10.1021/acsam i.7b045 61
    34.Q. Yu, P. Ge, Z. Liu, M. Xu, W. Yang, L. Zhou, D. Zhao, L.Mai, UltrafineSiOx/C nanospheres and their pomegranate?like assemblies for high?performance lithium storage. J. Mater.Chem. A 6(30), 14903–14909(2018). https://doi.org/10.1039/C8TA0 3987A
    35 .Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L.Zhou, L. Mai, Monodisperse and homogeneousSiOx/C micro?spheres:a promising high?capacity and durable anode material for lithium?ion batteries. Energy Storage Mater. 13, 112–118(2018). https://doi.org/10.1016/j.ensm.2018.01.004
    36 .R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia,Carbon shelled porousSnO2-δnanosheet arrays as advanced anodes for lithium?ion batteries. Energy Storage Mater. 13,303 –311(2018). https://doi.org/10.1016/j.ensm.2018.02.009
    37 .T. Wang, H.K. Kim, Y. Liu, W. Li, J.T. Gri ths et al., Bottom?up formation of carbon?based structures with multilevel hier?archy from MOF?guest polyhedra. J. Am. Chem. Soc. 140(19),6130–6136(2018). https://doi.org/10.1021/jacs.8b024 11
    38.T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan,Metal?organic framework derived porous ternaryZnCo2O4nanoplate arrays grown on carbon cloth as binder?free elec?trodes for lithium?ion batteries. Chem. Eng. J. 354, 454–462(2018). https://doi.org/10.1016/j.cej.2018.08.037
    39 .K. Wang, S. Pei, Z. He, L.A. Huang, S. Zhu, J. Guo, H. Shao,J. Wang, Synthesis of a novel porous silicon microsphere@carbon core?shell composite via in situ MOF coating for lith?ium ion battery anodes. Chem. Eng. J. 356, 272–281(2019).https://doi.org/10.1016/j.cej.2018.09.027
    40 .Q. Xie, P. Liu, D. Zeng, W. Xu, L. Wang, Z.?Z. Zhu, L. Mai,D.?L. Peng, Dual electrostatic assembly of graphene encapsu?lated nanosheet?assembled ZnO–Mn–C hollow microspheres as a lithium ion battery anode. Adv. Funct. Mater. 28, 1707433(2018). https://doi.org/10.1002/adfm.20170 7433

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700