用户名: 密码: 验证码:
A high H_2 evolution rate under visible light of a CdS/TiO_2@Ni S catalyst due to a directional electron transfer between the phases
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A high H_2 evolution rate under visible light of a CdS/TiO_2@Ni S catalyst due to a directional electron transfer between the phases
  • 作者:Jianling ; Meng ; Yongdan ; Li
  • 英文作者:Jianling Meng;Yongdan Li;School of Material and Chemical Engineering, Tongren University;Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory for Chemical Engineering, School of Chemical Engineering, Tianjin University;
  • 英文关键词:Directional electron transfer;;Photocatalysis;;Hydrogen;;Visible light
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:School of Material and Chemical Engineering, Tongren University;Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory for Chemical Engineering, School of Chemical Engineering, Tianjin University;
  • 出版日期:2019-03-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:Supported by the Scientific Research Starting Foundation for Doctors(trxyD H1512);; the Foundation for Youth Talent Growth Project in the Ministry of Science and Technology of China(20171184);; the Mutual Foundation in the Ministry of Science and Technology of China(20177315)
  • 语种:英文;
  • 页:ZHGC201903007
  • 页数:5
  • CN:03
  • ISSN:11-3270/TQ
  • 分类号:71-75
摘要
The photocatalytic activity of CdS can be greatly improved by co-modification of NiS and TiO_2 materials; furthermore the order of connection affects much. A directional electron transfer route via CdS → TiO_2→ NiS is found crucial to the enhancement of ternary catalyst, where TiO_2 acts as an electron reservoir and Ni S works as an effective cocatalyst. Cd S/TiO_2@Ni S with Ni S loaded on TiO_2 has an activity of H_2 evolution 2.5 times higher than NiS@Cd S/TiO_2 with Ni S pre-loaded on Cd S. Faster e-/h+separation rates is obtained of Cd S/TiO_2@Ni S under visible light than under extra UV light irradiation, which in turn demonstrates the importance of directional electron transfer route.
        The photocatalytic activity of CdS can be greatly improved by co-modification of NiS and TiO_2 materials; furthermore the order of connection affects much. A directional electron transfer route via CdS → TiO_2→ NiS is found crucial to the enhancement of ternary catalyst, where TiO_2 acts as an electron reservoir and Ni S works as an effective cocatalyst. Cd S/TiO_2@Ni S with Ni S loaded on TiO_2 has an activity of H_2 evolution 2.5 times higher than NiS@Cd S/TiO_2 with Ni S pre-loaded on Cd S. Faster e-/h+separation rates is obtained of Cd S/TiO_2@Ni S under visible light than under extra UV light irradiation, which in turn demonstrates the importance of directional electron transfer route.
引文
[1] F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water,Chem. Mater. 20(2008)35–54.
    [2] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1972)37–38.
    [3] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+in the band structures and photocatalytic properties of AgMO3(M:Ta and Nb)with the perovskite structure, J. Phys. Chem. B106(2002)12441–12447.
    [4] K. Maeda, K. Domen, Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light, Chem. Mater. 22(2010)612–623.
    [5] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysul?de Sm2Ti2S2O5as a stable photocatalyst for water oxidation and reduction under visible light irradiation(λ≤650 nm), J. Am. Chem. Soc. 124(2002)13547–13553.
    [6] M. Kitano, M. Hara, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem.20(2010)627–641.
    [7] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production, Renew. Sust.Energ. Rev. 11(2007)401–425.
    [8] H.N. Kim, T.W. Kim, I.Y. Kim, S.J. Hwang, Cocatalyst-free photocatalysts for ef?cient visible-light-induced H2production:porous assemblies of CdS quantum dots and layered titanate nanosheets, Adv. Funct. Mater. 21(2011)3111–3118.
    [9] N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2particles:size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99(1995)16646–16654.
    [10] I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited Cd Se quantum dots into Ti O2nanoparticles, J. Am. Chem. Soc. 129(2007)4136–4137.
    [11] B.R. Hyun, A.C. Bartnik, J.K. Lee, H. Imoto, L.F. Sun, J.J. Choi, Y. Chujo, T. Hanrath, C.K.Ober, F.W. Wise, Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules, Nano Lett. 10(2010)318–323.
    [12] R.S. Dibbell, D.F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2nanoparticles, J. Phys. Chem. C 113(2009)3139.
    [13] A. Maurya, P. Chauhan, Structural and optical characterization of CdS/TiO2nanocomposite, Mater. Charact. 62(2011)382–390.
    [14] S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by?lling 1D TiO2nanotubes with CdS, Chem. Mater. 20(2008)6784–6791.
    [15] K.H. Lin, C.Y. Chuang, Y.Y. Lee, F.C. Li, Y.M. Chang, Charge transfer in the heterointerfaces of CdS/CdSe cosensitized TiO2photoelectrode, J. Phys. Chem. C116(2011)1550–1555.
    [16] K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors:charge-transfer processes in colloidal cadmium sul?de-titania and cadmium sul?de-silver(I)iodide systems, J. Phys. Chem. 94(1990)6435–6440.
    [17] P. Kubelka, F. Munk, Re?ection characteristics of paints, Zh. Tekh. Phys. 12(1931)593–601.
    [18] H. Park, W. Choi, M.R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production,J. Mater. Chem. 18(2008)2379–2385.
    [19] H.I. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3through the cascadal electron transfer, J. Phys. Chem. C 115(2011)9797–9805.
    [20] H. Park, Y.K. Kim, W. Choi, Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2hybrids under visible light,J. Phys. Chem. C 115(2011)6141–6148.
    [21] W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu, Highly ef?cient and noble metal-free NiS/CdS photocatalysts for H2evolution from lactic acid sacri?cial solution under visible light, Chem. Commun. 46(2010)7631–7633.
    [22] J. Zhang, Q. Xu, Z.C. Feng, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed. 47(2008)1766–1769.
    [23] J. Piris, A.J. Ferguson, J.L. Blackburn, A.G. Norman, G. Rumbles, D.C. Selmarten, N.Kopidakis, Ef?cient photoinduced charge injection from chemical bath deposited CdS into mesoporous TiO2probed with time-resolved microwave conductivity,J. Phys. Chem. C 112(2008)7742–7749.
    [24] S.H. Lin, R.G. Alden, M. Hayashi, S. Suzuki, H.A. Murchison, Theoretical calculation of femtosecond time-resolved spectra of initial electron transfer in photosynthetic reaction centers, J. Phys. Chem. 97(1993)12566–12573.
    [25] J.S. Jang, S.H. Choi, H.G. Kim, J.S. Lee, Location and state of Pt in platinized CdS/TiO2photocatalysts for hydrogen production from water under visible light, J. Phys.Chem. C 112(2008)17200–17205.
    [26] C.T. Yuan, Y.G. Wang, K.Y. Huang, T.Y. Chen, P. Yu, J. Tang, A. Sitt, U. Banin, O. Millo,Multiple lipid compartments slow vesicle contents release in lipases and serum, ACS Nano 6(2012)176–182.
    [27] S. Ryuzaki, J. Onoe, In?uence of charge accumulation of photogenerated carriers in the vicinity of donor/acceptor interface on the open-circuit voltage of zincporphyrin/C60 heterojunction organic photovoltaic cells, J. Phys. D. Appl. Phys. 44(2011)265102–265108.
    [28] P. Siders, R.A. Marcus, Quantum effects in electron-transfer reactions, J. Am. Chem.Soc. 103(1981)741–747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700