用户名: 密码: 验证码:
表层微压缩和加压热处理实木地板基材的剖面密度分布和尺寸稳定性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density Profile and Dimensional Stability of Solid Wood Floor Substrates Treated with Light Compression and Pressurized Steam
  • 作者:黄荣凤 ; 黄琼涛 ; 黄彦慧 ; 蔡琦 ; 刘子欢
  • 英文作者:HUANG Rong-feng;HUANG Qiong-tao;HUANG Yan-hui;CAI Qi;LIU Zi-huan;Research Institute of Wood Industry,Chinese Academy of Forestry;Key Lab of Wood Science and Technology of State Forestry and Grassland Administration;Yihua Lifestyle Technology Co.,Ltd.;
  • 关键词:实木地板基材 ; 表层微压缩 ; 加压热处理 ; 尺寸稳定性 ; 变形回弹
  • 英文关键词:solid wood floor substrate;;light surface compression;;pressurized steam treatment;;dimension stability;;deformation recovery
  • 中文刊名:MCGY
  • 英文刊名:China Wood Industry
  • 机构:中国林科院木材工业研究所;国家林业和草原局木材科学与技术重点实验室;宜华生活科技股份有限公司;
  • 出版日期:2019-03-08
  • 出版单位:木材工业
  • 年:2019
  • 期:v.33;No.178
  • 基金:中央级公益性科研院所基本科研业务费专项资金项目重大成果转移转化计划“杨木表层可控性绿色增强技术示范应用”(CAFYBB2018ZC003)
  • 语种:中文;
  • 页:MCGY201902002
  • 页数:5
  • CN:02
  • ISSN:11-2726/S
  • 分类号:10-14
摘要
采用水热控制方法,进行番龙眼和桦木地板基材表层微压缩,微压缩层厚度可控制在2~3 mm,表层密度提高0.15 g/cm~3以上,芯部密度不变;再用加压热处理以固定压缩变形,改善尺寸稳定性。处理基材加工的地板尺寸变化率指标均比GB/T 35913-2018《地采暖用实木地板技术要求》限值低50%以上,吸湿变形回弹率大幅降低,加压热处理对压缩变形的固定效果非常显著。
        In this study, taun(Pometia spp.) and birch(Betula spp.) wood were compressed by 2-3 mm of thickness and treated with pressurized steam for compression fixing. It was found that surface density of the two wood samples increased by at least 0.15 g/cm~3 with unchanged densities in inner parts of the wood samples. After being processed into wood floors, dimensional change of the wood floor samples was at least 50% lower than the requirement of the National Standard GB/T 35913-2018,and thickness recovery of taun and birch wood floor samples was only 0.04 mm and 0.13 mm respectively, that proved effective compression fixation of the pressurized steam treatment.
引文
[1] Misato Norimoto. Large compressive deformation in wood[J]. Mokuzai Gakkaishi, 1993, 39(8):867-874.
    [2]李坚,吴玉章,马岩,等.功能性木材[M].北京:科学出版社,2011.
    [3] Akihisa Kitamori, Kiho Jung, Mori Takuro, Komatsu Kohei. Mechanical properties of compressed wood in accordance with the compression ratio[J]. Mokuzai Gakkaisi, 2010, 56(2):67-78.
    [4] Masafumi Inoue, Misato Norimoto, Yasushi Otsuka, Tadashi Yamada.Surface compression of coniferous wood lumber III. Permanent set of the surface compressed layer by a water solution of low molecular weight phenolic resin[J]. Mokuzai Gakkaishi, 1991, 37(3):234-240.
    [5] Michio Tokuda, Takayuki Uchisako, Naoyuki Suzuki. Feasibility of surface hardness Sugi board by heated roll-press for flooring board[J].Wood Industry, 2003, 58(3):112-118.
    [6] Koji Adachi, Masafumi Inoue, Shuichi Kawai. Deformation behavior of wood by roller pressing[J]. Mokuzai Gakkaishi, 2005, 51(4):234-242.
    [7] Zhiqiang Gao, Rongfeng Huang, Jianxiong Lu,Zhangjing Chen, Fei Guo, Tianyi Zhan. Sandwich compression of wood:Control of creating density gradient on lumber thickness and properties of compressed wood[J]. Wood Science and Technology, 2016, 50:833-844.
    [8] Rongfeng Huang, Yanwei Wang, Jianxiong Lu, Yaoming Zhang, Youke Zhao. Sandwich compression of wood by hygro-thermal control[J].Mokuzai Gakkaishi, 2012, 58(2):84-89.
    [9]王艳伟,黄荣凤,张耀明.水热控制下杨木的表层密实化及固定技术[J].木材工业,2012, 26(2):18-21.
    [10]高志强,张耀明,吴忠其,王艳伟,李任,黄荣凤.加压热处理对表层压缩杨木变形回弹的影响[J].木材工业,2017, 31(2):24-28.
    [11] GB/T 15036.1-2018,实木地板第一部分[S].
    [12] GB/T 35913-2018,地采暖用实木地板技术要求[S].
    [13] Dengyun Tu, Xiaohua Su, Tinting Zhang, Wenjun Fan, Qiaofang Zhou.Thermo-mechanical densification of Populus tomentosa var. tomentosa with low moisture content[J]. Bioresources, 2014, 9(3):3846-3856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700